
Exploring Automated Software
Testing, Verification, and Repair

Strategies

Lucas Cordeiro

lucas.cordeiro@manchester.ac.uk

https://ssvlab.github.io/lucasccordeiro/

Collaborators/funders:

Systems and Software Security / FM Research Group - UoM

ARM Centre of Excellence - UoM

PPGEE, PPGI – UFAM

Centre for Digital Trust and Society - UoM

UKRI, EPSRC, EU Horizon, and industrial partners

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

Career Summary

BSc/MSc in

Engineering and

Lecturer

MSc in Embedded

Systems

Configuration and

Build Manager

Feature Leader

Set-top Box

Software Engineer

PhD in Computer

Science

Postdoctoral

Researcher

Reader in Program

Analysis and

Cyber-Security

1,7 2 3 4

5 6 8 9

L. Cordeiro M. MustafaR. Banach N. Zhang

D. Dresner

Systems and Software Security
Research Group

A. CreswellB. Magri Y. Sun

ARM Centre of Excellence

https://www.cs.manchester.ac.uk/
arm-coe/

https://www.cs.manchester.ac.uk/arm-coe/
https://www.cs.manchester.ac.uk/arm-coe/

Centre for Digital Trust and Society

https://www.socialsciences.manc
hester.ac.uk/dts/

https://www.socialsciences.manchester.ac.uk/dts/
https://www.socialsciences.manchester.ac.uk/dts/

How much could software errors cost

your business?

Poor software quality cost US companies $2.41 trillion in

2022, while the accumulated software Technical Debt (TD)

has grown to ~$1.52 trillion

TD relies on temporary easy-to-

implement solutions to achieve short-

term results at the expense of

efficiency in the long run

The cost of poor software quality

in the US: A 2022 Report

Objective of this talk

• Introduce a logic-based automated reasoning platform to find

and repair software vulnerabilities

• Explain testing, verification, and repair techniques to build secure

software systems

• Present recent advancements towards a hybrid approach to

protecting against memory safety and concurrency

vulnerabilities

Discuss automated testing, verification, and

repair techniques to establish a robust foundation

for building secure software systems

Can we leverage program analysis/synthesis

to discover and fix more software

vulnerabilities than existing state-of-the-art
approaches?

Research Questions

Given a program and a safety/security

specification, can we automatically verify that
the program performs as specified?

ESBMC: An Automated Verification Platform

Logic-based automated reasoning for

checking the safety and security of AI

and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification

Conditions

Abstract Syntax

Tree (AST)

Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/CHERI

/CUDA

Control-flow

Graph

Generator

clang

Memory

Model

External

Libraries

Correctness

Witness

Violation

Witness

Scan
Java/Kotlin Soot

Scan
Solidity Solidity

Scan
Python ast2json

Abstract

Interpretation

Code

Instrumentation
CP Solver

Large

Language

Models

Root Cause Analysis /

Program Repair

Source code

Models

Parallelization

Software

onnx2c /

keras2c

Tiny ML

APACHE

LICENSE

VERSION 2.0

Caching /

Slicing

Agenda

• Intoduce typical BMC Architectures for Verifying Software

Systems

• Software Verification and Testing with the ESBMC

Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with

ESBMC

SAT solving as enabling technology

unit propagation,

conflict clauses and

non-chronological

backtracking

SAT Competition

http://www.satcompetition.org/

http://www.satcompetition.org/

Bounded Model Checking (BMC)

IS THERE

ANY

ERROR?

IS THERE

ANY

ERROR

IN k

STEPS?

no

yes

completeness

threshold reached

k+1 still tractable

k+1 intractable

no

yes

M, S

M, S

ok

ok

fail

fail

bound

MC:

BMC:

“never” happens

in practice

SAT/SMT-based BMC tools for C

• CBMC (C Bounded Model Checker)

▪ http://www.cprover.org/

▪ SAT-based (MiniSat) “workhorse”

▪ also SystemC frontend

• ESBMC (The Efficient SMT-based Bounded Model Checker)

▪ http://esbmc.org

▪ SMT-based (Z3, Boolector, Yices, Bitbuwzla, MathSAT, etc)

▪ Clang frontend, Soot, Solidity, and Python

• LLBMC (Low-level Bounded Model Checker)

▪ http://llbmc.org

▪ SMT-based (Boolector or STP)

▪ uses LLVM intermediate language

⇒share common high-level architecture

http://www.cprover.org/
http://esbmc.org/
http://llbmc.org/

Typical Features for BMC Architectures

• Full language support

▪ bit-precise operations, structs, arrays, ...

▪ heap-allocated memory

▪ concurrency

• Built-in safety checks

▪ overflow, div-by-zero, array out-of-bounds indexing, ...

▪ memory safety: nil pointer deref, memory leaks, ...

▪ deadlocks, race conditions

• User-specified assertions and error labels

• Non-deterministic modelling

▪ nondeterministic assignments

▪ assume-statements

High-Level BMC Architectures

Parser Static Analysis

CNF-genSolver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

(bit blasting)

intermediate

program

equations

(path and safety

conditions)

1. Simplify control flow

2. Unwind all of the loops

3. Convert into single static assignment (SSA) form

4. Convert into equations and simplify

5. (Bit-blast)

6. Solve with a SAT/SMT solver

7. Convert SAT assignment into a counterexample

General Approach

• remove all side effects

▪ e.g., j = ++i; becomes i = i+1; j = i;

• simplify all control flow structures into core forms

▪ e.g., replace for, do while by while

▪ e.g., replace case by if

• make control flow explicit

▪ e.g., replace continue, break by goto

▪ e.g., replace if, while by goto

Control flow simplifications

Demo: esbmc --goto-functions-only example-1.c

int main() {

int i,j;

for(i=0; i<6; i++) {

j=i;

}

assert(j==i);

return j;

}

main (c::main):

int i;

int j;

i = 0;

1: IF !(i < 6) THEN GOTO 2

j = i;

i = i + 1;

GOTO 1

2: ASSERT j == i

RETURN: j

END_FUNCTION

int main() {

int i,j;

i=0;

while(i<6) {

j=i;

i++;

}

assert(j==i);

return j;

}

i++

Control flow simplifications

main (c::main):

int i;

int j;

i = 0;

1: IF !(i < 6) THEN GOTO 2

j = i;

i = i + 1;

GOTO 1

2: ASSERT j == i

RETURN: j

END_FUNCTION

C := i1 = 0
g1 = (i1>=6) ? true : false
j1 = g1 ? j0 : i1
i2 = g1 ? i1 + 1
g2 = (i2 >=6) ? true : false

j2 = g2 ? j1 : i2
i2 = g2 ? i1 + 1
…

g6 = (i6 >=6) ? true : false
j6 = g6 ? j5 : i6
i6 = g6 ? i5 + 1
return1 = j6

P := (j6 == i6)

Control flow simplifications

Loop unwinding

• All loops are “unwound”, i.e., replaced by several guarded

copies of the loop body

▪ same for backward gotos and recursive functions

▪ can use different unwinding bounds for different loops

⇒ Each statement is executed at most once

• to check whether unwinding is sufficient special “unwinding

assertion” claims are added

⇒ If a program satisfies all of its claims and all

unwinding assertions then it is correct!

Loop unwinding

void f(...) {

...

while(cond) {

Body;

}

Remainder;

}

Loop unwinding

void f(...) {

...

if(cond) {

Body;

while(cond) {

Body;

}

}

Remainder;

}

unwind one
iteration

Loop unwinding

void f(...) {

...

if(cond) {

Body;

if(cond) {

Body;

while(cond) {

Body;

}

}

}

Remainder;

}

unwind one
iteration

unwind one
iteration

Loop unwinding

void f(...) {

...

if(cond) {

Body;

if(cond) {

Body;

if(cond) {

Body;

while(cond) {

Body;

}

}

}

}

Remainder;

}

unwind one
iteration

unwind one
iteration

unwind one
iteration…

Loop unwinding

void f(...) {

...

if(cond) {

Body;

if(cond) {

Body;

if(cond) {

Body;

assert(!cond);

}

}

}

}

Remainder;

}

unwinding
assertion

unwind one
iteration

unwind one
iteration

unwind one
iteration…

• unwinding assertion

▪ inserted after last

unwound iteration

▪ violated if program runs

longer than bound

permits

⇒ if not violated: (real)

correctness result!

Loop unwinding

void f(...) {

...

for(i=0; i<N; i++) {

...

b[i]=a[i];

...

};

...

for(i=0; i<N; i++) {

...

assert(b[i]-a[i]>0);

...

};

...

Remainder;

}

• unwinding assertion

▪ inserted after last

unwound iteration

▪ violated if program runs

longer than bound

permits

⇒ if not violated: (real)

correctness result!

⇒what about multiple

loops?

▪ use --partial-loops to

suppress insertion

⇒unsound

Safety conditions

• Built-in safety checks converted into explicit assertions:

e.g., array safety:

a[i]=...;

⇒ assert(0 <= i && i < N); a[i]=...;

⇒ sometimes easier at intermediate representation

or formula level

e.g., word-aligned pointer access, overflow, ...

High-Level Architecture

Parser Static Analysis

CNF-genSolver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

(bit blasting)

intermediate

program

equations

(path and safety

conditions)

Transforming straight-line

programs into equations

• simple if each variable is assigned only once:

• still simple if variables are assigned multiple times:

introduce fresh copy for each occurrence (static single

assignment (SSA) form)

x = a;

y = x + 1;

z = y – 1;

program constraints

x = a &&

y = x + 1 &&

z = y – 1

x = a;

x = x + 1;

x = x – 1;

program

x0 = a;

x1 = x0 + 1;

x2 = x1 – 1;

program in SSA-form

But what about control flow branches (if-statements)?

• for each control flow join point, add a new variable

with guarded assignment as definition

▪ also called ϕ-function

if(v)

x = y;

else

x = z;

w = x;

if(v
0
)

x
0
= y

0
;

else

x
1
= z

0
;

w
1
= ?

introduce & use
new variable

Transforming loop-free

programs into equations

But what about control flow branches (if-statements)?

• for each control flow join point, add a new variable

with guarded assignment as definition

▪ also called ϕ-function

if(v)

x = y;

else

x = z;

w = x;

if(v
0
)

x
0
= y

0
;

else

x
1
= z

0
;

x
2
= v

0
? x

0
: x

1
;

w
1
= x

2
;

introduce & use
new variable

Transforming loop-free

programs into equations

Bit-blasting

Conversion of equations into SAT problem:

• simple assignments:

|[x = y]| ≙ ⋀i xi ⇔ yi

⇒static analysis must approximate effective bitwidth well

• ϕ-functions:

|[x = v ? y : z]| ≙ (v ⇒ |[x = y]|) ⋀ (¬ v ⇒ |[x = z]|)

• Boolean operations:

|[x = y | z]| ≙ ⋀i xi ⇔ (yi⋁ zi)

Exercise: relational operations

effective
bitwidth

Bit-blasting arithmetic operations

Build circuits that implement the operations!

1-bit addition:

Full adder as CNF:

Build circuits that implement the operations!

⇒adds w variables, 6*w clauses

⇒multiplication / division much more complicated

Bit-blasting arithmetic operations

Handling Arrays

Arrays can be replaced by individual variables,

with a “demux” at each access:

⇒surprisingly effective (for N<1000) because value

of i can often be determined statically

– due to constant propagation

int a[10];

...

x = a[i];

int a
0
, a

1
, a

2
, ... a

9
;

...

x = (i==0 ? a
0

: (i==1 ? a
1

: (i==2 ? a
2

: ...);

Handling Arrays with Theories

Arrays can be seen as ADT with two operations:

• read: Array x Index → Element

• write: Array x Index x Element → Array

Axioms describe intended semantics:

⇒requires support by SMT-solver

“select”

“update”

...

a[i]=a[i]+1;

...

...

a
1
=write(a

0
,i,read(a

0
,i)+1);

...

SAT vs. SMT

BMC tools use both propositional satisfiability (SAT) and

satisfiability modulo theories (SMT) solvers:

• SAT solvers require encoding everything in CNF

▪ limited support for high-level operations

▪ easier to reflect machine-level semantics

▪ can be extremely efficient (SMT falls back to SAT)

• SMT solvers support built-in theories

▪ equality, free function symbols, arithmetics, arrays,...

▪ sometimes even quantifiers

▪ very flexible, extensible, front-end easier

▪ requires extra effort to enforce precise semantics

▪ can be slower

Satisfiability Modulo Theories

• SMT decides the satisfiability of first-order logic formulae using

the combination of different background theories (building-in

operators)

Theory Example

Equality x1=x2 (x1=x3) (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 4) (y2 – 3y3 3)

Arrays (j = k a[k]=2) a[j]=2

Combined theories (j k a[j]=2) a[i] < 3

Satisfiability Modulo Theories

• let a be an array, b, c and d be signed bit-vectors of width 16, 32 and 32

respectively, and let g be an unary function.

b' extends b to the signed equivalent bit-vector of size 32

replace b' by c−3 in the inequality

using facts about bit-vector arithmetic

Satisfiability Modulo Theories

applying the theory of arrays

() () 413112 :4 −=+− dccggstep

The function g implies that for all x and y,

if x = y, then g (x) = g (y) (congruence rule).

10)d 5,(c AT :5 ==Sstep

• SMT solvers also apply:

– standard algebraic reduction rules

– contextual simplification

falsefalser

() ()777 paapa ==

()()() () 41331,12,, :3 −=+−=− dcccgccastoreselectgstep

Modeling with non-determinism

Extend C with three modelling features:

• assert(e): aborts execution when e is false,

no-op otherwise

• nondet_int(): returns non-deterministic int-value

• assume(e): “ignores” execution when e is false,

no-op otherwise

void assert (_Bool e) { if (!e) exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

General Approach

• Use a C program to set up the structure and deterministic

computations

• Use non-determinism to set up search space

• Use assumptions to constrain search space

• Use failing assertion to start the search

int main() {

int x=nondet_int(),y=nondet_int(),z=nondet_int();

__ESBMC_assume(x > 0 && y > 0 && z > 0);

__ESBMC_assume(x < 16384 && y < 16384 && z < 16384);

assert(x*x + y*y != z*z);

return 0;

}

Agenda

• Intoduce typical BMC Architectures for Verifying Software

Systems

• Software Verification and Testing with the ESBMC

Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with

ESBMC

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

()

()

()

=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()

=+

++

++

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

()

()

()

=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()

=+

++

++

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

()

()

()

=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()

=+

++

++

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)

k-induction checks loop-free programs...

• base case (basek): find a counter-example with up to k loop unwindings

(plain BMC)

• forward condition (fwdk): check that P holds in all states reachable

within k unwindings

• inductive step (stepk): check that whenever P holds for k unwindings, it

also holds after next unwinding

– havoc variables

– assume loop condition

– run loop body (k times)

– assume loop termination

⇒ iterative deepening if inconclusive Gadelha, M., Ismail, H., Cordeiro, L.: Handling loops in bounded

model checking of C programs via k-induction. Int. J. Softw. Tools

Technol. Transf. 19(1): 97-114 (2017)

Induction-Based Verification for Software

unsigned int x=*;
while(x>0) x--;
assume(x<=0);
assert(x==0);

k=1

while k<=max_iterations do

if baseP,,k then

return trace s[0..k]

else

k=k+1

if fwdP,,k then

return true

else if stepP’,,k then

return true

end if

end

return unknown

unsigned int x=*;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=*;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Induction-Based Verification for Software

• Infer invariants based on intervals as abstract domain via

a dependence graph

– E.g., a ≤ x ≤ b (integer and floating-point)

– Inject intervals as assumptions and contract them via CSP

– Remove unreachable states

Automatic Invariant Generation

k-Induction can prove the correctness of more

programs when the invariant generation is enabled

Line Interval for “a” Restriction

4 (−∞,+∞) None

6 (−∞, 100] 𝑎 ≤ 100

7 (100, +∞) 𝑎 > 100

k-Induction proof rule

“hijacks” loop conditions

to nondeterministic

values, thus computing

intervals become

essential

Gadelha, M., Monteiro, F., Cordeiro, L.,

Nicole, D.: ESBMC v6.0: Verifying C

Programs Using k-Induction and Invariant

Inference - (Competition Contribution).

TACAS (3) 2019: 209-213

Computing Intervals

• Restrictions are computed through

intersection:

(−∞,∞) ∩ (−∞,50) = (−∞, 50)

(−∞,∞) ∩ [50,∞) = [50,∞)

• Merging is computed with the Hull operation:

[3,3] ⊔ [5,5] = [3,5]

• In ESBMC, the interval has:

– Lower: represents the lower bound of the interval (or infinity)

– Upper: represents the upper bound of the interval (or infinity)

– Lower is always less or equal than upper

Computing Intervals

BMC of Software Using Interval

Methods via Contractors

Apply
Contractor

Domain:

Constraint:

1) Analyze intervals and properties
– Static Analysis / Abstract

Interpretation

2) Convert the problem into a CSP
– Variables, Domains and Constraints

3) Apply contractor to CSP
– Forward-Backward Contractor

4) Apply reduced intervals back to

the program

__ESBMC_assume(y <= 30 && y >= 20);

This assumption prunes our

search space to the orange area

Intl. Software Verification Competition
(SV-Comp 2023)

• SV-COMP 2023, 23805 verification tasks, max. score: 38644

• ESBMC solved most verification tasks in 10 seconds

Verification of the Overall Category

ESBMC

CBMC
2LS

UAutomizer

Concurrency verification

Writing concurrent programs is DIFFICULT

• programmers have to guarantee

▪ correctness of sequential execution

of each individual process

▪ with nondeterministic interferences

from other processes (schedules)

• rare schedules result in errors that are difficult

to find, reproduce, and repair

▪ testers can spend weeks chasing a single bug

⇒ huge productivity problem

communication mechanism

…

P2 PN
P2

processes

Concurrency Errors

There are two main kinds of concurrency errors:

• progress errors: deadlock, starvation, ...

▪ typically caused by wrong synchronization

▪ requires modeling of synchronization primitives

o mutex locking / unlocking

▪ requires modeling of (global) error condition

• safety errors: assertion violation, ...

▪ typically caused by data races (i.e., unsynchronized access to shared

data)

▪ requires modeling of synchronization primitives

▪ can be checked locally

⇒ focus here on safety errors

Shared memory concurrent

programs

Concurrent programming styles:

• communication via message passing

▪ “truly” parallel distributed systems

▪ multiple computations advancing simultaneously

• communication via shared memory

▪ multi-threaded programs

▪ only one thread active at any given time (conceptually), but active thread can

be changed at any given time

o active == uncontested access to shared memory

o can be single-core or multi-core

⇒focus here on multi-threaded, shared memory programs

Multi-threaded programs

• typical C-implementation: pthreads

• formed of individual sequential programs (threads)

▪ can be created and destroyed on the fly

▪ typically for BMC: assume upper bound

▪ each possibly with loops and recursive function calls

▪ each with local variables

• each thread can read and write shared variables

▪ assume sequential consistency: writes are immediately visible to all the

other programs

▪ weak memory models can be modeled

• execution is interleaving of thread executions

▪ only valid for sequential consistency

Concurrency Verification

Approaches

• Explicit schedule exploration (ESBMC)

▪ lazy exploration

▪ schedule recording

• Partial order methods (CBMC)

• Sequentialization

▪ KISS

▪ Lal / Reps (eager sequentialization)

▪ Lazy CSeq

▪ memory unwinding

Context-Bounded Model Checking in ESBMC

Idea: iteratively generate all possible interleavings and call

the BMC procedure on each interleaving

... combines

• symbolic model checking: on each individual interleaving

• explicit state model checking: explore all interleavings

– bound the number of context switches allowed among threads

… implements

• symbolic state hashing (SHA1 hashes)

• monotonic partial order reduction that combines dynamic POR with

symbolic state space exploration
Lucas C. Cordeiro, Bernd Fischer: Verifying multi-threaded software using

smt-based context-bounded model checking. ICSE 2011: 331-340

execution paths

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context-bound

CS1

syntax-directed

expansion rules

CS2

Lazy Exploration of the Reachability Tree

execution paths

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

CS1

syntax-directed

expansion rules

CS2

interleaving completed, so

call single-threaded BMC

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

CS1

CS2

backtrack to last unexpanded node

and continue

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

CS1

CS2

backtrack to last unexpanded node

and continue

symbolic execution can statically

determine that path is blocked
(encoded in instrumented mutex-op)

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

4: treader,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

5: ttwoStage,2,

val1=0, val2=0,

m1=1, m2=0,…

6: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

CS1

CS2

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

program counter: 0
mutexes: m1= 0 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program state;

(value of program counter

and program variables)

val1 and val2 should be

updated synchronously

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

interleaving #1: 1

program counter: 1
mutexes: m1 =1 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 2
mutexes: m1= 1 m2= 0
globals: val1=1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #1: 1-2

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 3
mutexes: m1 =0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #1: 1-2-3

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 7
mutexes: m1 =1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #1: 1-2-3–7

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 8
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #1: 1-2-3–7-8

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 11
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 =1 t2 = 0

CS1

interleaving #1: 1-2-3–7-8-11

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 12
mutexes: m1 =0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

interleaving #1: 1-2-3–7-8-11-12

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 4
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 5
mutexes: m1= 0 m2= 1
globals: val1 = 1 val2=2
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4-5

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 6
mutexes: m1= 0 m2 =0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4-5-6

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 13
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 0

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 14
mutexes: m1= 1 m2= 1
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 =2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 15
mutexes: m1= 1 m2 =0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14-15

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 16
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14-15-16

interleaving completed, so

call single-threaded BMC

QF formula is unsatisfiable,

i.e., assertion holds

...so try next interleaving

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

program counter: 0
mutexes: m1= 0 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

interleaving #2:

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 3
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #2: 1-2-3

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 7
mutexes: m1 =1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #2: 1-2-3–7

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 16
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 4
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1
Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

CS2

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16–4

Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

program counter: 6
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 1
locals: t1 = 1 t2 = 0

CS1
Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

CS2

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16–4-5-6

interleaving completed, so

call single-threaded BMC (again)

QF formula is satisfiable,

i.e., assertion fails

...so found a bug for a

specific interleaving

Results on SV-COMP’20 Benchmarks with
Reachable Error Label

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:

Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.

Program. Lang. Syst. 44(1): 1:1-1:50 (2022)

Results on SV-COMP’20 Benchmarks with
Reachable Error Label

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:

Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.

Program. Lang. Syst. 44(1): 1:1-1:50 (2022)

Results on SV-COMP’20 Benchmarks with
Reachable Error Label

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:

Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.

Program. Lang. Syst. 44(1): 1:1-1:50 (2022)

White-box Fuzzing:

Bug Finding and Code Coverage

• Translate the program to an intermediate representation (IR)

• Add properties to check errors or goals to check coverage

• Symbolically execute IR to produce an SSA program

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover errors and goals

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and
Java

IR Symex
SMT

Solver

Cover errors
or goals

Properties
and goals

SSA

Gadelha, M., Menezes, R., Cordeiro, L.: ESBMC 6.1: automated test

case generation using bounded model checking. Int. J. Softw. Tools

Technol. Transf. 23(6): 857-861 (2021).

FuSeBMC v4
Framework

• Use Clang tooling infrastructure

• Employ three engines in its reachability
analysis: one BMC and two fuzzing engines

• Use a tracer to coordinate the various engines

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

Interval Analysis and Methods for

Automated Test Case Generation

This combined method

can reduce CPU time,

memory usage, and

energy consumption

We advocate that

combining cooperative

verification and

constraint programming

is essential to leverage a

modular cooperative

cloud-native testing

platform

Aldughaim, M., Alshmrany, K., Gadelha, M., de Freitas, R., Cordeiro, L.: FuSeBMC_IA: Interval Analysis and Methods
for Test Case Generation - (Competition Contribution). FASE 2023: 324-329

Competition on Software Testing 2023:
Results of the Overall Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

https://test-comp.sosy-lab.org/2023/

EBF: Black-Box Cooperative

Verification for Concurrent Programs

Aljaafari, F., Shmarov, F., Manino, E.,
Menezes, R., Cordeiro, L.: EBF 4.2: Black-Box
Cooperative Verification for Concurrent
Programs - (Competition Contribution).
TACAS (2) 2023: 541-546

EBF 4.0 with different BMC tools

• BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min

• RAM limit is 15 GB per Benchexec run

• ConcurrencySafety main from SV-COMP 2022

- Witness validation switched off

• Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

• EBF4.0 increases the number of detected bugs for BMC tools

• EBF4.0 provides a better trade-off between bug finding and safety

proving than each BMC engine

• wolfMQTT library is a client implementation of the MQTT protocol written

in C for IoT devices

Int main(){

Pthread_t th1, th2;

static MQTTCtx mqttCtx;

pthread_create(&th1, subscribe_task, &mqttCtx))

pthread_create(&th2, waitMessage_task, &mqttCtx))}

static void *subscribe_task(void *client){

.....

MqttClient_WaitType(client,msg,MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static void *waitMessage_task(void *client){

…

MqttClient_WaitType(client, msg, MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static int MqttClient_WaitType(MqttClient *client,

void *packet_obj,

byte wait_type, word16 wait_packet_id, int timeout_ms)

{

.....

rc = wm_SemLock(&client->lockClient);

if (rc == 0) {

if (MqttClient_RespList_Find(client,

(MqttPacketType)wait_type,

wait_packet_id, &pendResp)) {

if (pendResp->packetDone) {

rc = pendResp->packet_ret;
.....}

subscribe_task

and waitMessage_task are

called through different threads
accessing packet_ret,

causing a data race in
MqttClient_WaitType

Here is where the

data race might

happen! Unprotected

pointer

WolfMQTT Verification

WolfMQTT Verification

Buffer
ACK

ACK

1

2

3

4

Sharing buffer

between clients

Unprotected

pointer for the

status code

Data race might

happen if the broker

sends the status code

Buffer ACK

ACK

1

2

3

4
Buffer

To solve it they copied
the code status into
different buffers

After fixing the

concurrency

vulnerability

Bug Report

https://github.com/wolfSSL/wolfMQTT

https://github.com/wolfSSL/wolfMQTT

Agenda

• Intoduce typical BMC Architectures for Verifying Software

Systems

• Software Verification and Testing with the ESBMC

Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with

ESBMC

Buggy
Original code

Modified code
(Potentially

fixed)DL Model

Fixed
code

No
effect

Introduces
new errors

Deep Learning and

Automated Program Repair

[1] Jin M, Shahriar S, Tufano M, Shi X, Lu S, Sundaresan N, Svyatkovskiy A. InferFix: End-to-End Program Repair with LLMs. arXiv e-prints. 2023

Mar:arXiv-2303.

[2] Li Y, Wang S, Nguyen TN. Dlfix: Context-based code transformation learning for automated program repair. InProceedings of the ACM/IEEE

42nd International Conference on Software Engineering 2020 Jun 27 (pp. 602-614).

[3] Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on

artificial intelligence 2017 Feb 12 (Vol. 31, No. 1).

Large Language Models and

Automated Program Repair

Buggy Original
code

Modified code
(Potentially fixed)

Large
Language Model

[4, 5]

Fixed
code

No
effect

Introduces
new errors

Feedback

[4] Wang X, Wang Y, Wan Y, Mi F, Li Y, Zhou P, Liu J, Wu H, Jiang X, Liu Q. Compilable neural code generation with compiler feedback.

arXiv preprint arXiv:2203.05132. 2022 Mar 10.

[5] Xia CS, Zhang L. Conversational automated program repair. arXiv preprint arXiv:2301.13246. 2023 Jan 30.[]

Large Language Models and

Automated Program Repair

Buggy Original
code

Modified code
(Potentially fixed)

Large
Language Model

[4, 5]

Fixed
code

No
effect

Introduces
new errors

Feedback

Compile-time error feedback misses run-time errors

Test suite may not be available

LLM + Formal Verification for

Self-Healing Software

Original
code

Modified code

Large
Language Model

Bounded Model Checker
(BMC)

Verification
Successful

Code +
Property
violation

[6] Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software

Security: Towards Self-Healing Software via Large Language Models and Formal Verification. Under

review at the ACM Transactions on Software Engineering and Methodology, 2023.

LLM + Formal Verification for

Self-Healing Software

Original
code

Modified code

Large
Language Model

Verification
Successful

Code +
Property
violation

LLM to Find Software Vulnerabilities

GPT-3.5 turbo

While we were in the process of preparing

this presentation, if we asked GPT-3.5 “Is

there any problem with this code?”, the

response was an incorrect answer:

LLM + Formal Verification for

Self-Healing Software

GPT-3.5 turbo

Verification
Successful

Violated property:
file test.c line 4
function main

arithmetic
overflow on mul

!overflow(”*”, y, y)

Experimental Evaluation

Set-up

• Processor: AMD Ryzen

Threadripper PRO 3995WX

• Cores: 16

• RAM: 256 GB

• Model: MacBook Pro (2017)

• RAM: 16 GB RAM of

LPDDR3 RAM (2133 MHz)

• Processor: 2.5 GHz Intel

Core i7-7660U

Code Generation

Code Repair

Benchmarks

Generate 1000 programs

with GPT-3.5 turbo with

the following prompt

Objectives

RQ1: (Code generation) Are the state-

of-the-art GPT models capable of

producing compilable, semantically

correct programs?

RQ2: (Code repair) Can external

feedback improve the bug detection

and patching ability of the GPT

models?

Original
code

Modified code

GPT-3.5 turbo

Verification
Successful

Code +
Property
violation

10 to 50 lines of
compilable C code

99.9% compilable programs

80% of the generated code buffer overflow and dereference failures
could be fixed in a maximum of three iterations

RQ1

RQ2

Experimental Results

Generative AI through the Lens of

Formal Verification
• The first AI-generated repository consisting of 112k independent and

compilable C programs

Each program

varies between 50

and 600 lines

• Programming tasks from network management and table games to

string manipulation

GPT-3.5-turbo

ESBMC-7.2

Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M., Cordeiro, L., Mavroeidis,

V.: The FormAI Dataset: Generative AI in Software Security Through

the Lens of Formal Verification. Accepted at ACM PROMISE, 2023

Ensure Diversity

• Proper prompt engineering is crucial

for achieving a diverse dataset

• Each API call randomly chooses a

type from 200 options in the Type

category, including topics like Wi-Fi

Signal Strength Analyzer, QR Code

Reader, and others

• Similarly, a coding style is selected

from 100 options in the Style category

during each query

Comparison of Various Datasets Based

on their Labeling Classifications

C Keyword Frequency and

Associated CWEs

The CWE Top 13

126

ID Name

1 CWE-787 Out-of-bounds Write

2 CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site

Scripting')

3 CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')

4 CWE-20 Improper Input Validation

5 CWE-125 Out-of-bounds Read

6 CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection')

7 CWE-416 Use After Free

8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type

11 CWE-476 NULL Pointer Dereference

12 CWE-502 Deserialization of Untrusted Data

13 CWE-190 Integer Overflow or Wraparound

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html

Which Parameters Are Most Effective?

• We conducted experiments on 1,000

randomly selected samples

• The classification results showcase the

effects of different unwind (u) and time (t)

coupled with/without k-induction

• The detection results for parameter

selection of (u,t)=(1,10), (1,30), or

(1,100) without k-induction show that

increasing the time threshold yields

diminishing returns for the same unwind

parameter

Code Repair Performance

FormAI dataset Accuracy

1000 samples randomly
selected from 112k C programs

35.5%

WARNING: BE CAREFUL WHEN RUNNING THE

COMPILED PROGRAMS, SOME CAN CONNECT TO

THE WEB, SCAN YOUR LOCAL NETWORK, OR

DELETE A RANDOM FILE FROM YOUR FILE

SYSTEM. ALWAYS CHECK THE SOURCE CODE

AND THE COMMENTS IN THE FILE BEFORE

RUNNING IT!!!

https://github.com/FormAI-Dataset

FormAI Dataset - Availability

https://github.com/FormAI-Dataset

Agenda

• Intoduce typical BMC Architectures for Verifying Software

Systems

• Software Verification and Testing with the ESBMC

Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with

ESBMC

Capability Hardware Enhanced
RISC Instructions (CHERI)

CheriBSD2 - adaptation of FreeBSD to
support CHERI ISAs

CHERI Clang/LLVM and LLD1 - compiler
and linker for CHERI ISAs

pointer address (64 bits)

063

permissions (15 bits) reserved base and bounds (41 bits)

CHERI 128-bit capability

CHERI instruction-set extensions

1https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

2https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello3 - SoC development board
with a CHERI-extended ARMv8-A
processor
3https://www.arm.com/architecture/cpu/morello

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024; /* models arbitrary user input */
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17; /* succeeds */
char *__capability c = cheri_setbounds(b-1, n); /* fails: not the same object */
/* ... */ /* more CHERI-C API checks */
memset_c(c, 42, n); /* setting memory through a capability */

}

CHERI-C program

CHERI-C API

New capability types

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024;
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17;
char *__capability c = cheri_setbounds(b-1, n);
/* ... */
memset_c(c, 42, n);

}

#include <string.h>
#include <stdio.h>

void main(void) {
int n = nondet_uint() % 1024;
char a[n+1], *b = a;
b[n] = 17;
char *c = b-1;
memset(c, 42, n);

}

All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM
compiler

Pure-capability CHERI-C model

ESBMC-CHERI

GOTO

Program

SMT

formula

ASTScan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property is violated

C Program
Control-flow

Graph

Generator

clang

CHERI-

Clang
Scan AST

Memory

Model

CHERI

Memory

Model

External

Libraries

CHERI-C

API

Correctness

Proof

Violation

Witness

Implement computational

model for CHERI-C API

functions inside ESBMC

(e.g., cheri_setbounds)

• New capability types

• Tagged memory

• Capability dereferencing

CHERI Clang/LLVM
compiler

Brauße et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776

Vision: Automated Reasoning System for
Secure SW and AI

Source

code

Binary

code

AI code

Automated

Reasoning System

(ARS): Searching,

learning, memory

and parallelization

Vulnerability

classification

Properties

Severity

Likelihood

Remediation cost

Explainable

Behavior Correctness

Robustness

Detection Correction

Code inspection

Static Analysis

Dynamic Analysis Fault Localization

Fault Repair

Develop an automated reasoning system for safeguarding

software and AI systems against security vulnerabilities

in an increasingly digital and interconnected world

(Real) Impact: Students and Contributors

• 5 PhD theses

• 30+ MSc dissertations

• 30+ final-year projects

• GitHub:

▪ 35 contributors

▪ 22,160 commits

▪ 212 stars

▪ 84 forks

https://github.com/esbmc/esbmc

https://github.com/esbmc/esbmc

Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• Best Tool Paper Award at SBSeg’23

• 29 awards from the international competitions on software verification (SV-

COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in C/C++ software

• Funded by government (EPSRC, British Council, Royal Society, CAPES,

CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

🥇

Acknowledgements

	Slide 1
	Slide 2
	Slide 3: Systems and Software Security Research Group
	Slide 4: ARM Centre of Excellence
	Slide 5: Centre for Digital Trust and Society
	Slide 6: How much could software errors cost your business?
	Slide 7: Objective of this talk
	Slide 8: Research Questions
	Slide 9: ESBMC: An Automated Verification Platform
	Slide 10: Agenda
	Slide 11: SAT solving as enabling technology
	Slide 12: SAT Competition
	Slide 13: Bounded Model Checking (BMC)
	Slide 14: SAT/SMT-based BMC tools for C
	Slide 15: Typical Features for BMC Architectures
	Slide 16: High-Level BMC Architectures
	Slide 17: General Approach
	Slide 18: Control flow simplifications
	Slide 19: Control flow simplifications
	Slide 20: Control flow simplifications
	Slide 21: Loop unwinding
	Slide 22: Loop unwinding
	Slide 23: Loop unwinding
	Slide 24: Loop unwinding
	Slide 25: Loop unwinding
	Slide 26: Loop unwinding
	Slide 27: Loop unwinding
	Slide 28: Safety conditions
	Slide 29: High-Level Architecture
	Slide 30: Transforming straight-line programs into equations
	Slide 31: Transforming loop-free programs into equations
	Slide 32: Transforming loop-free programs into equations
	Slide 33: Bit-blasting
	Slide 34: Bit-blasting arithmetic operations
	Slide 35: Bit-blasting arithmetic operations
	Slide 36: Handling Arrays
	Slide 37: Handling Arrays with Theories
	Slide 44: SAT vs. SMT
	Slide 45: Satisfiability Modulo Theories
	Slide 47: Satisfiability Modulo Theories
	Slide 48: Satisfiability Modulo Theories
	Slide 49: Modeling with non-determinism
	Slide 50: General Approach
	Slide 51: Agenda
	Slide 52: Software BMC
	Slide 53: Software BMC
	Slide 54: Software BMC
	Slide 55: Software BMC
	Slide 56: Software BMC
	Slide 57: Software BMC
	Slide 58: Software BMC
	Slide 59: Software BMC
	Slide 60: Induction-Based Verification for Software
	Slide 61: Induction-Based Verification for Software
	Slide 62: Automatic Invariant Generation
	Slide 63: Computing Intervals
	Slide 64: Computing Intervals
	Slide 65: BMC of Software Using Interval Methods via Contractors
	Slide 66: Intl. Software Verification Competition (SV-Comp 2023)
	Slide 67: Concurrency verification
	Slide 68: Concurrency Errors
	Slide 69: Shared memory concurrent programs
	Slide 70: Multi-threaded programs
	Slide 71: Concurrency Verification Approaches
	Slide 72: Context-Bounded Model Checking in ESBMC
	Slide 73: Lazy Exploration of the Reachability Tree
	Slide 74: Lazy Exploration of the Reachability Tree
	Slide 75: Lazy Exploration of the Reachability Tree
	Slide 76: Lazy Exploration of the Reachability Tree
	Slide 77: Lazy Exploration of the Reachability Tree
	Slide 78: Lazy exploration of interleavings
	Slide 79: Lazy exploration of interleavings
	Slide 80: Lazy exploration of interleavings
	Slide 81: Lazy exploration of interleavings
	Slide 82: Lazy exploration of interleavings
	Slide 83: Lazy exploration of interleavings
	Slide 84: Lazy exploration of interleavings
	Slide 85: Lazy exploration of interleavings
	Slide 86: Lazy exploration of interleavings
	Slide 87: Lazy exploration of interleavings
	Slide 88: Lazy exploration of interleavings
	Slide 89: Lazy exploration of interleavings
	Slide 90: Lazy exploration of interleavings
	Slide 91: Lazy exploration of interleavings
	Slide 92: Lazy exploration of interleavings
	Slide 93: Lazy exploration of interleavings
	Slide 94: Lazy exploration of interleavings
	Slide 95: Lazy exploration of interleavings
	Slide 96: Lazy exploration of interleavings
	Slide 97: Lazy exploration of interleavings
	Slide 98: Lazy exploration of interleavings
	Slide 99: Results on SV-COMP’20 Benchmarks with Reachable Error Label
	Slide 100: Results on SV-COMP’20 Benchmarks with Reachable Error Label
	Slide 101: Results on SV-COMP’20 Benchmarks with Reachable Error Label
	Slide 102: White-box Fuzzing: Bug Finding and Code Coverage
	Slide 103: FuSeBMC v4 Framework
	Slide 104: Interval Analysis and Methods for Automated Test Case Generation
	Slide 105: Competition on Software Testing 2023: Results of the Overall Category
	Slide 106: EBF: Black-Box Cooperative Verification for Concurrent Programs
	Slide 107: EBF 4.0 with different BMC tools
	Slide 108: WolfMQTT Verification
	Slide 109: WolfMQTT Verification
	Slide 110: Bug Report
	Slide 111
	Slide 112: Agenda
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Ensure Diversity
	Slide 124
	Slide 125
	Slide 126: The CWE Top 13
	Slide 127: Which Parameters Are Most Effective?
	Slide 128: Code Repair Performance
	Slide 129
	Slide 130: Agenda
	Slide 131: Capability Hardware Enhanced RISC Instructions (CHERI)
	Slide 132: CHERI-C program
	Slide 133
	Slide 134: ESBMC-CHERI
	Slide 135: Vision: Automated Reasoning System for Secure SW and AI
	Slide 136
	Slide 137: (Real) Impact: Students and Contributors
	Slide 138: Impact: Awards and Industrial Deployment
	Slide 139: Acknowledgements

