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ARM Centre of Excellence

Department of Computer Science / Arm Centre of Excellence

Advanced processor technologies

We investigate, develop and evaluate advanced and novel
approaches to processing and computation, emphasising
identifying novel ways to exploit the formidable complexity of the
multi-billion transistor microchips available today.

Arm Centre of Excellence

Our Centre of Excellence (CoE) expertise covers the full spectrum of
modern processor technologies, machine learning theory and
applications, and automation of reasoning to formally build verifiable
trustworthy hardware and software systems.

Machine learning and robotics

We investigate and develop modern dimensionality reduction
methods, preserving local and global structure relationships. We
also scientifically contribute to the foundations of information-
theoretic variable selection and state of the art Deep Learning
methodologies applied in image and video understanding.

Systems and software security

We develop algorithms, methods and protocols to address security
and privacy in distributed embedded applications and tools to
build verifiable, trustworthy software systems. Our expertise
covers a broad span of topics, including digital trust, security, and
privacy.

https://www.cs.manchester.ac.uk/
arm-coe/
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Centre for Digital Trust and Society

Afocal point for research across
the University that explores aspects
of trust and security in our digital
world.

Find out more »

https://www.soclalsciences.manc

hester.ac.uk/dts/

Digital Technologies and
Crime

Focuses on analysing and understanding criminal
activity across the digital spectrum.

Workplace and Organisational
Security

Researching institutional security, insider threats, supply

chain security and psychology of crime.

Privacy and Trust

Focusing on the interplay of 3 complex number of topics
around privacy and confidentiality.

Trusted Digital Systems

Developing tools, policies and practices to safeguard
data and communication.

Democracy and Trust

Researching the threats that digital technologies and Al
pose to trust and security in democratic systems.

Advanced Mathematics

Applying advanced mathematical theory and methods
for cyber security.
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How much could software errors cost
your business?

Poor software quality cost US companies $2.41 trillion in
2022, while the accumulated software Technical Debt (TD)
has grown to ~$1.52 trillion

_ US GDP for 2022 was ~$23.3 T
~CPSQ-%$241T US IT labor base for 2022 was ~§1.51 T
//' T — D

TD relies on temporary easy-to-
Implement solutions to achieve short-

Technical Debt term results at the expense of
$1.527 | . . :
(principal only) efficiency in the long run
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Objective of this talk

Discuss automated testing, verification, and
repair technigues to establish a robust foundation
for building secure software systems

* Introduce a logic-based automated reasoning platform to find
and repair software vulnerabilities

« EXplain testing, verification, and repair technigues to build secure
software systems

* Present recent advancements towards a hybrid approach to
protecting against memory safety and concurrency
vulnerabilities



Research Questions

Given a program and a safety/security
specification, can we automatically verify that
the program performs as specified?

Can we leverage program analysis/synthesis
to discover and fix more software
vulnerabilities than existing state-of-the-art
approaches?




ESBMC: An Automated Verification Platform

Logic-based automated reasoning for
checking the safety and security of Al
and software systems
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Agenda

Intoduce typical BMC Architectures for Verifying Software
Systems

|

Software Verification and Testing with the ESBMC
Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

Towards Verification of Programs for CHERI Platforms with
ESBMC



SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

* Solverdated programesing inguaget
* Compier opumizations using sohvers

1,000,000 Constraints * Bo & Ogcimization

* Program Analysis
* Equivalence Checking
100,000 Constraints PAN S oApETIn
* Bounded MC . . .
okt unit propagation,
10,000 Constraints

conflict clauses and
non-chronological
backtracking

[,000 Constraints
1998 2001 2004 2007 2010
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Bounded Model Checking (BMC)

“never” happens
In practice

BIMC: reesses s %(/
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SAT/SMT-based BMC tools for C

* CBMC (C Bounded Model Checker)
= http://www.cprover.org/
» SAT-based (MiniSat) “workhorse”
* also SystemC frontend

* ESBMC (The Efficient SMT-based Bounded Model Checker)
= http://esbmc.org
» SMT-based (Z3, Boolector, Yices, Bitbuwzla, MathSAT, etc)
» Clang frontend, Soot, Solidity, and Python

* LLBMC (Low-level Bounded Model Checker)
= http://llbmc.org
= SMT-based (Boolector or STP)
» uses LLVM intermediate language

—share common high-level architecture
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Typical Features for BMC Architectures

Full language support

* Dbit-precise operations, structs, arrays, ...

* heap-allocated memory

= concurrency

Built-in safety checks

= overflow, div-by-zero, array out-of-bounds indexing, ...

= memory safety: nil pointer deref, memory leaks, ...
» deadlocks, race conditions

User-specified assertions and error labels

Non-deterministic modelling
* nondeterministic assignments
* assume-statements



High-Level BMC Architectures

C Program : .
Parser Static Analysis

SAFE

UNSAFE + CEX
CEX-gen
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General Approach

. Simplify control flow

. Unwind all of the loops

. Convert into single static assignment (SSA) form
. Convert into equations and simplify

. (Bit-blast)

. Solve with a SAT/SMT solver

. Convert SAT assignment into a counterexample



Control flow simplifications

* remove all side effects
" e.g., |=++i; becomes i=1+1; | =];

* simplify all control flow structures into core forms
" e.g., replace for, do while by while
" e.g., replace case by If

* make control flow explicit

= e.g., replace continue, break by goto
" e.g., replace If, while by goto




Control flow simplifications

Int main() {
int 1,j;

for(i=0; i<6; i++) {

=

}

assert(j==i);

return j;

}

Demo: esbmc --goto-functions-only example-1.c

Int main() {
int i,j;
1=0;
while(i<6) {
J=1,
I++;

}

assert(j==i);

return j;

}

main (c::main):
Int i;
Int |;
i++ 1=0;
1:IF !(i<6) THEN GOTO 2
)=
=1+ 1
GOTO 1
2. ASSERT ==
RETURN: |
END_FUNCTION




Control flow simplifications

main (c::main):
INt i;
Int J;
| =0;
1: IF (1< 6) THEN GOTO 2
J =1
=1+ 1;
GOTO 1
2: ASSERT ==
RETURN: |
END_FUNCTION

C:= i120/\

gl = (i,>=6) ? true : false
g, = (i, >=6) ? true : false 2
=07 A

gs = (is >=6) ? true : false A
lg=0s? i+ 1 A
return; = jg

P = (s == Is)




Loop unwinding

* All loops are “unwound’, i.e., replaced by several guarded
copies of the loop body

= same for backward gotos and recursive functions

= can use different unwinding bounds for different loops
— Each statement is executed at most once

* to check whether unwinding is sufficient special “unwinding
assertion” claims are added

= |If a program satisfies all of its claims and all
unwinding assertions then it is correct!



Loop unwinding

void f(...) {
i letane) |
}

Remainder;

}




Loop unwinding

void f(...) { :
o unwind one
1f(condléggiiéé;;gk)g:::j::>

while(cond) {

}
}

Remainder;

}




Loop unwinding

void f(...) {

o unwind one
if(cond) : .
{ unwind one

if(cond) iteration

while(cond) {

}
}
}

Remainder;

}




Loop unwinding

void f(...) { .
unwind one

L (cond)
i1f(cond) :
unwind one

if(cond) iteration...

while(cond) {

}
}
}
}

Remainder;

; 7




Loop unwinding

void f(...) { * unwinding assertion

= |nserted after last
unwound iteration

= violated if program runs
longer than bound
permits

assert(!cond); =if not violated: (real)
correctness result!

unwind one
if(cond) { 15

i1f(cond)

unwind one

if(cond) iteration...

unwinding

assertion
Remainder;

}




Loop unwinding

void f(...) { * unwinding assertion

= |nserted after last

for(i=0; i<N; i++) { . .
unwound iteration

b[i1]=al[1]; = violated if program runs
R longer than bound

} permits

for(i=0; i<N; i++) { =if not violated: (real)

correctness result!

ssert(b[i]-a[i]>0); |
SSETRARLI AL —what about multiple

¥ loops?
f— nder: » use --partial-loops to
} 7 suppress insertion

= unsound



Safety conditions

* Bullt-in safety checks converted into explicit assertions:
e.g., array safety:

ali]=...;
= assert(0 <=1&& 1< N); a[i]=...;

= sometimes easier at intermediate representation
or formula level

e.g., word-aligned pointer access, overflow, ...



High-Level Architecture

C Program \ . .
Parser Static Analysis

SAFE

S
UNSAFE + CEX
CEX-gen




Transforming straight-line
programs into equations

* simple if each variable Is assigned only once:

X =a, X=a &&
y=X+1; > y=x+1 &&
z=y—-1,; z=y-1

program constraints

* still simple if variables are assigned multiple times:

X = a; Xg = &,
c=xr 1 ) xsxrh
X=X-1; Xy, = Xq — 1;

program program in SSA-form

Introduce fresh copy for each occurrence (static single
assignment (SSA) form)




Transforming loop-free

programs into equations
But what about control flow branches (if-statements)?

if(v) 1T (vy)
X =Y, Xo = Yo»
else else
X = Z; ) X{ = Zgy;
w = X; w, = 7
4 4

iIntroduce & use
new variable

* for each control flow join point, add a new variable
with guarded assignment as definition

» also called ¢-function



Transforming loop-free

programs into equations
But what about control flow branches (if-statements)?

1T (v) 1T (vy)
X =Y, Xo = Yo»
else else
X; = Vg 7 Xg @ Xq;
W = X; Wy = X5;
4 4

iIntroduce & use
new variable

* for each control flow join point, add a new variable
with guarded assignment as definition

» also called ¢-function



Bit-blasting

Conversion of equations into SAT problem:

* simple assighments: effective
[x=yll2a Aix ey bitwidth

= static analysis must approximate effective bitwidth well

* ¢-functions:
[x=v?y:z]l2(v=[[x=y])AGv=]|x=2])
* Boolean operations:
[x=ylz]l2 Aix e (y;V 2)

Exercise: relational operations



Bit-blasting arithmetic operations

Build circuits that implement the operations!
1-bit addition:

ab
|| Full Adder
CA s = (a+b+i)mod2 = adbdi
‘ o = (a+b+i1)div2 = a-b+a-i+b-i
0 S

Full adder as CNF:

(aVbV—o)AN(aV—-bViV—-0)A(aV bV —iVo)A
(—raVbViV-o)A(—aVbV—-iVo)A(—aV -bVo)



Bit-blasting arithmetic operations

Build circuits that implement the operations!

8-Bit ripple carry adder (RCA)

azbr  agbg  asbs  asby  asbs  asby  aby  agbg
ool ogllogllalloallollce:
FA|| | FA|||FA|| |FA|||FA|| FA|||FA|| FA
o— | = | =1 =1 =1=1=1=]

S7 S6 S5 S4 53 59 S1 S0

—adds w variables, 6*w clauses
= multiplication / division much more complicated



Handling Arrays

Arrays can be replaced by individual variables,
with a “demux” at each access:

int a[10]; int a;, a;, a,, ... ag;
X = al[i]; ,l: X = (1==0 ? a,

-

4

= surprisingly effective (for N<1000) because value
of | can often be determined statically

— due to constant propagation



Handling Arrays with Theories

Arrays can be seen as ADT with two operations:

* read: Array x Index — Ele
* write: Array x Index x Element

é.l.::i:|=a['i]+1; IJ ) z.zll.=.wr1'te(a0,1',read(a0,1)+1); IJ

Axioms describe intended semantics:

a write modifies the position written to ...

> p=r — read(write(a,p,v),r)=yv

/»ﬁ(p:r) — read(write(a,p,v) r) =read(a,r)

. and nothing else

—=requires support by SMT-solver



SAT vs. SMT

BMC tools use both propositional satisfiability (SAT) and
satisfiability modulo theories (SMT) solvers:

* SAT solvers require encoding everything in CNF

limited support for high-level operations
easier to reflect machine-level semantics
can be extremely efficient (SMT falls back to SAT)

* SMT solvers support built-in theories

equality, free function symbols, arithmetics, arrays,...
sometimes even quantifiers

very flexible, extensible, front-end easier

requires extra effort to enforce precise semantics
can be slower



Satisfiability Modulo Theories

 SMT decides the satisfiability of first-order logic formulae using
the combination of different background theories (building-in
operators)

Theory Example
Equality X1=X5 A 7 (X15X3) = —(X1=X5)
Bit-vectors (b>1)&1=1

Linear arithmetic (4y, + 3y, >24) v (Y, —3y3<3)
Arrays (j =k A alk]=2) = a[j]=2

Combined theories |(j<k A a[j]=2) = a[i] <3




Satisfiability Modulo Theories

* |etabe an array, b, ¢ and d be signed bit-vectors of width 16, 32 and 32
respectively, and let g be an unary function.

g(select(store(a,c,12)), SignExt(b,16)+ 3)

= o(SignExt(b,16)—c +4) A SignExt(b,16)=c—-3Arc+1=d —4
b' extends b to the signed equivalent bit-vector of size 32

step1: g(select(store(a, c,12), b‘+3)) = g(b‘—c +4)Ab'=c-3Ac+1=d -4
replace b' by ¢c—3 in the inequality

step2: g(select(store(a,c12),c-3+3))= glc-3-c+4)ac-3=c-3Ac+1=d -4
using facts about bit-vector arithmetic

Step3: g(sefect(stare(a, c,l 2), c)) = g(l)n c-3=c-3Anc+l=d-4



Satisfiability Modulo Theories

step 3: g(select(store(a,c12),c))# gl)ac—3=c—-3Ac+1=d -4
applying the theory of arrays
step 4:9(12)= g(l)Ac—-3Ac+1=d -4

The function g implies that for all x and v,
If x =y, then g (X) =g (y) (congruence rule).

step 5:SAT (c=5,d =10)

« SMT solvers also apply:
— standard algebraic reduction rules |r A false— false

— contextual simplification a=7Apla)-a=7p(7)




Modeling with non-determinism

Extend C with three modelling features:

« assert(e). aborts execution when e is false,
no-op otherwise

void assert (_Bool e) { if (le) exit(); }

* nondet_int(): returns non-deterministic int-value

int nondet_int () { int x; return x; }

« assume(e): “ignores” execution when e is false,
no-op otherwise

void assume (_Bool e) { while (le) ; }




General Approach

Use a C program to set up the structure and deterministic
computations

Use non-determinism to set up search space
Use assumptions to constrain search space
Use failing assertion to start the search

int main() {
int x=nondet_int(),y=nondet_int(),z=nondet_int();
__ESBMC_assume(x > 0 & y > 0 && z > 0);
__ESBMC_assume(x < 16384 && y < 16384 && z < 16384);
assert(x*x + y*y = z*z);
return 0;




Agenda

Intoduce typical BMC Architectures for Verifying Software
Systems

Software Verification and Testing with the ESBMC
Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

Towards Verification of Programs for CHERI Platforms with
ESBMC



Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

| 1-intaf2], i, x; |

v

| 2. if 1(x==0) then goto 7 }—l
¥

i»= | | T-assert2 +1>=0 |
v v

| 4 asserti<2 | ‘ 8 assert2+i<2 ‘
¥ ¥

| 5:ali] = 0; | | 9 afi+2] = 1; |
v v

| 6: goto 10 |_9| 10:assert 1 +i>=0 |
]

‘ 1:assert1+i<2 |
v

‘ 12: assert a[i+1] == 1 |
¥

|




Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

| 1-intaf2], i, x; |

v

2. if 1(x==0) then goto 7 I—l
W
a

| 3rassert1>=0

| 5 ali] = 0:

| 6: goto 10 |_‘)| 10: assert 1 +1>=0




Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);
b

| 1:intaf2], 1, x; |
¥
2 if I(x==0) then goto 7 I—l
¥
T assert

| 3rassert1>=0




Software BMC

« program modelled as transition system

— state: pc and program variables
— derived from control-flow graph

— added safety properties as extra nodes
« program unfolded up to given bounds

» unfolded program optimized to reduce blow-up

— constant propagation/slicing
— forward substitutions/caching

— unreachable code/pointer analysis J

> crucial

int getPassword() {

char buf[2];

gets(buf);

return strcmp(buf, "ML");
b

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

| 1:intaf2], 1, x; |
¥
| 2 if I(x==0) then goto 7 }—l
¥
= T assert2 +i

2

8 assert2 +1<2

v

| 9[2]1

| 6: goto 10 H 10: assert 1 +

11 assert1+1<2

v

‘ 12: assert a[i+1] == 1

¥

| 13: return nondet(int)

¥

| 14: end function




int getPassword() {

char buf[2];
Software BMC gets(bun);
return strcmp(buf, "ML");
« program modelled as transition system R
_ void main(){
— state: pc and program variables ?Pt x=getPassword();
— derived from control-flow graph | |(3)|(’?|§tf(“Access Denied\n”);
— added safety properties as extra nodes }ex't(o);
« program unfolded up to given bounds , PrintifAccess Grantedin®);
» unfolded program optimized to reduce blow-up
— constant propagation/slicing \ ﬂ
— forward substitutions/caching ~ crucial . .
. . = X4 ==
— unreachable code/pointer analysis 2, = ap WITH [i:=0]
. front—e_nd converts un_rolled and 22: 22 WITH [2+ig:=1]
optimized program into SSA 8, =0, ?a; :a;

ty = a,[1+ip] ==



int getPassword() {

Software BMC char bufl2);
return strcmp(buf, "ML");

° Ta ¥

program modelled as trangltlon system void mainOx

— state: pc and program variables ?at)x:getPassword();

— derived from control-flow graph | p)l(’i_ntf(“Access Denied\n”);

— added safety properties as extra nodes }ex't(o);
+ program unfolded up to given bounds , PrintifAccess Grantedin®);
 unfolded program optimized to reduce blow-up

— constant propagation/slicing \ ﬂ

— forward substitutions/caching ~ crucial g,= (%, =0)

— unreachable code/pointer analysis _ 3 = store(a, 1, )

C=|ra, =4,
Aa, = store(a,,2 +iy,1)
| na, =ite(g;,ay,8,)

* front-end converts unrolled and
optimized program into SSA o

« extraction of constraints C and properties P o | A2+ 2082+, <2

Al+i, 20A1+i, <2

| Aselect(a,, i, +1)=1



Software BMC

program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

 unfolded program optimized to reduce blow-up
— constant propagation/slicing \
— forward substitutions/caching ~ crucial
— unreachable code/pointer analysis _

* front-end converts unrolled and
optimized program into SSA

« extraction of constraints C and properties P
— specific to selected SMT solver, uses theories

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

b

[9,:=(x=0)

Aa, = store(ay, i,,0)
C=|ra, =4,

Aa, = store(a,,2 +iy,1)
| na, =ite(g;,ay,8,)

i, >0, <2
A2+i,20A2+i,<2
Al+i, 20A1+i, <2
| Aselect(a,, i, +1)=1




int getPassword() {

char buf[2];
Software BMC Gete(but);
return strcmp(buf, "ML");

¥

void main(){

program modelled as transition system

— state: pc and program variables int x=getPassword();

— derived from control-flow graph If|(3)|(’?|§tf(“Access Denied\n");

— added safety properties as extra nodes }eXit(O);
« program unfolded up to given bounds , PrintifAccess Grantedin®);
» unfolded program optimized to reduce blow-up

— constant propagation/slicing \ ﬂ

— forward substitutions/caching - crucial "9, = (%, =0)

— unreachable code/pointer analysis _ 3 = store(a, 1, )

C=|ra, =4,
Aa, = store(a,,2 +iy,1)
| na, =ite(g;,ay,8,)

* front-end converts unrolled and
optimized program into SSA

i, >0, <2
 extraction of constraints C and properties P pi| 2200241 <2
— specific to selected SMT solver, uses theories  rselect(ay i, +1)=1
o Sat|Sf|ab|I|ty CheCk Of C /\ —IP Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)



Induction-Based Verification for Software

kK-induction checks loop-free programs...

* base case (base)): find a counter-example with up to k loop unwindings
(plain BMC)

» forward condition (fwd,): check that P holds in all states reachable
within k unwindings

* Inductive step (step,): check that whenever P holds for k unwindings, it
also holds after next unwinding

— havoc variables
— assume loop condition
— run loop body (k times)

— assume loop termination

= |terat|ve deepenlng |f |nC0nCIUS|Ve Gadelha, M., Ismail, H., Cordeiro, L.: Handling loops in bounded

model checking of C programs via k-induction. Int. J. Softw. Tools
Technol. Transf. 19(1): 97-114 (2017)



Induction-Based Verification for Software

k=1
- _ : : unsigned int x=%;
wh_|Ie kK<=max_iterations do while(x>0) x--:
if base, ,, then assume(x<=0);
return trace s[0..k] assert(x==0);
else unsigned int x=%*
X=%;
k=K+1 while(x>0) x--;
if fwd, ,, then assert(x<=0);

return true assert(x==0),

else if StepP’,¢,k then unsigned int x=%*;

return true assume(x>0);
end if while(x>0) x--;
assume(x<=0);

end assert(x==0);

return unknown



Automatic Invariant Generation

e Infer invariants based on intervals as abstract domain via

a dependence graph
— E.qg., a < x < b (integer and floating-point)

— Inject intervals as assumptions and contract them via CSP

— Remove unreachable states

int main()
{
int a = *;
& (=00, +0) RLIE while(a <= 100)
6 (—o0,100] a <100 at+;
assert(a>10);
7 (100, +o0) a > 100 return 0;

kK-Induction can prove the correctness of more
programs when the invariant generation is enabled

K-Induction proof rule
“hijacks” loop conditions
to nondeterministic
values, thus computing
Intervals become
essential

Gadelha, M., Monteiro, F., Cordeiro, L.,
Nicole, D.; ESBMC v6.0: Verifying C
Programs Using k-Induction and Invariant
Inference - (Competition Contribution).
TACAS (3) 2019: 209-213



Computing Intervals

 |n ESBMC, the interval has:

— Lower: represents the lower bound of the interval (or infinity)
— Upper: represents the upper bound of the interval (or infinity)
— Lower is always less or equal than upper

» Restrictions are computed through int a;
Intersection: if(a < 50) {
(_oo, oo) N (_00550) = (_OOJ 50) ‘2.
(==, ) N [50,%) =[50, =)

* Merging is computed with the Hull operation:
[3,3] U [5,9] = [3,5]




Computing Intervals

iint main() :{Lnt main()
- ) int a;
Int a; if(a < 50) {
if(a < 50) { __ESBMC_assume(a < 50);

__ESBMC_assume(a >= 3 && a <= 5);
// sas
5




1) Analyze intervals and properties

BMC of Software Using Interval
Methods via Contractors

— Static Analysis / Abstract
Interpretation

2) Convert the problem into a CSP

— Variables, Domains and Constraints

3) Apply contractor to CSP

— Forward-Backward Contractor

4) Apply reduced intervals back to

the program

1 unsigned int x=nondet_uint ();

2> unsigned int y=nondet_uint ();

3 _ _ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);

5 assert(x >= vy);

1 unsigned int x=nondet_uint ();

2 unsigned int y=nondet_uint();

3 _ ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);

5 assert (x >= V)

o
’

Domain: [z] = [20,30] and [y] = [0, 30]
Constraint: ¥y —+ < 0

__ _ESBMC assume(y <= 30 && y >= 20);

This assumption prunes our
search space to the

Apply e
Contractor /l
[z] = [20,30] and [y] = [0, 30] ] = [20,30] and [y = [20,30]
f(z) >0 I=10,00)
flx)=y—=x [f(z)1] = I Nyo] — [xo] Forward-step

r=y—f(x) [x]=I[ro]N[yo] = [f(x)1] Backward-step
y=1rF(@)+z (o] =yl N [f(x)] +[z1]  Backward-step




Intl. Software Verification Competition
(SV-Comp 2023)
« SV-COMP 2023, 23805 verification tasks, max. score: 38644

« ESBMC solved most verification tasks in < 10 seconds CEMC

Verification of the Overall Category



Concurrency verification

Writing concurrent programs is DIFFICULT

* programmers have to guarantee communication mechanism
» correctness of sequential execution
of each individual process
» with nondeterministic interferences
from other processes (schedules) ProCEsses

* rare schedules result in errors that are difficult
to find, reproduce, and repair

» testers can spend weeks chasing a single bug

= huge productivity problem



Concurrency Errors

There are two main kinds of concurrency errors:

* progress errors: deadlock, starvation, ...
» typically caused by wrong synchronization

» requires modeling of synchronization primitives
o0 mutex locking / unlocking

* requires modeling of (global) error condition

* safety errors: assertion violation, ...

= typically caused by data races (i.e., unsynchronized access to shared
data)

* requires modeling of synchronization primitives
= can be checked locally
= focus here on safety errors



Shared memory concurrent
programs

Concurrent programming styles:

* communication via message passing
= “truly” parallel distributed systems
= multiple computations advancing simultaneously

* communication via shared memory
= multi-threaded programs

» only one thread active at any given time (conceptually), but active thread can
be changed at any given time
0 active == uncontested access to shared memory
0 can be single-core or multi-core

=focus here on multi-threaded, shared memory programs



Multi-threaded programs

typical C-implementation: pthreads

formed of individual sequential programs (threads)
= can be created and destroyed on the fly
= typically for BMC: assume upper bound
= each possibly with loops and recursive function calls
= each with local variables

each thread can read and write shared variables

* assume sequential consistency: writes are immediately visible to all the
other programs

= weak memory models can be modeled

execution is interleaving of thread executions
= only valid for sequential consistency



Concurrency Verification
Approaches

* EXxplicit schedule exploration (ESBMC)
» lazy exploration

» schedule recording
* Partial order methods (CBMC)

* Sequentialization
= KISS
» Lal / Reps (eager sequentialization)
= Lazy CSeq

= memory unwinding



Context-Bounded Model Checking in ESBMC

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

... combines
« symbolic model checking: on each individual interleaving

« explicit state model checking: explore all interleavings

— bound the number of context switches allowed among threads
.. Implements
 symbolic state hashing (SHA1 hashes)

« monotonic partial order reduction that combines dynamic POR with
symbolic state space exploration

Lucas C. Cordeiro, Bernd Fischer: Verifying multi-threaded software using
smt-based context-bounded model checking. ICSE 2011: 331-340



Lazy Exploration of the Reachability Tree

L  voltmam0  <—— active thread, context-bound
Initial state ——  val1=0, val2=0, _
 m1=0, m2=0,... < global and local variables

expansion rules

5%

L3 ttwoStagelll SyntaX-diI‘eCted
vall=0, val2=0,
ml1l=1, m2=0,...

CSl

CS2

——> execution paths



Lazy Exploration of the Reachability Tree

_  voltmam0  <—— active thread, context-bound
Initial state ——  val1=0, val2=0, _
~ m1=0,m2=0,... < global and local variables

5%

V1! twostager s syntax-directed J
vall=0, val2=0 :
’ ’ expansion rules
ml1l=1, m2=0,... P

/ CS1
02: ttwoStage’Z’
vall=1, val2=0,
m1=1, m2=0,... Interleaving completed, so
/ call single-threaded BMC
J

—

——> execution paths



Lazy Exploration of the Reachability Tree

_  voltmam0  <—— active thread, context-bound
Initial state ——  val1=0, val2=0, _
m1=0, m2=0,... < global and local variables

Ul: ttwoStagelll
Va1|1=10, Vg'ZOZO, backtrack to last unexpanded node
ml= =0,... -
» M=, and continue

02: ttwoStage’Z’ 03: treader’2’
vall=1, val2=0, vall=0, val2=0,
m1=1, m2=0,... m1=1, m2=0,...
/ CS?2

/

——> execution paths
----- > blocked execution paths (eliminated)




Lazy Exploration of the Reachability Tree

_  voltmam0  <—— active thread, context-bound
Initial state ——  val1=0, val2=0, _
~ m1=0,m2=0,... < global and local variables

Ul: ttwoStagelll
vall=0, val2=0,
ml=1, m2=0,...

backtrack to last unexpanded node
and continue

/f | -
02: ttwoStage’Z’ lI)B: treader|’2’ \
vall=1, val2=0, vall=0, val2=0, - : :
m1=1. m2=0.... m1=1. m2=0,... (symbol_lc execution can statically
/ N determine that path is blocked
— (encoded in instrumented mutex-op)

/
b 3

——> execution paths
----- > blocked execution paths (eliminated)




Lazy Exploration of the Reachability Tree

 Yvitman0,  «<—— active thread, context-bound
initial state ——  val1=0, val2=0, _
m1 o m2=0,... < global and local variables
twoStage Uy. treader’]-’
vall 0, val2= O vall=0, val2=0,
ml=1, m2= O ml=1, m2=0,...

/ ™~ PN

02: ttwoStage’Z’ 03: treader’2’ 05: ttwoStage’Z’ 06: treader’z’
vall=1, val2=0, vall=0, val2=0, vall=0, val2=0, vall=0, val2=0,

m1=1, m2=0,... m1=1, m2=0,... m1=1, m2=0,... ml=1, m2=0,...

N N
/ SN CS2 SN /\
/ /' ‘\ /' ‘\ / \
/ \ / \
b ~ b ~

——> execution paths
----- > blocked execution paths (eliminated)




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and

call the BMC procedure on each interleaving

Thread twoStage vall and val2 should be

1: lock(m1); :

7 vall(— 1) updated synchronously |_ 0) {
3: unlock(m1l); | = armoex(M1);
4: lock(m2); >
5: val2 = vall + 1; program state;

6: unlock(mz2); (value of program counter

and program variables)

program counter: 0

mutexes: mi=0 m2=0 15: unlock(m2);
globals: vall =0 val2 =0 16: assert(t2==(t1+1));
locals: t1 =0 t2 =0




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1

Thread twoStage
: lock(m1l);

: vall = 1;
unlock(ml);
lock(m2);

O\U1-|>UOI\)I-|'

unlock(m2);

val2 = vall + 1;

program counter: 1
mutexes: ml1l =1

m2=20

globals: wvall =0 wval2 =0

locals: t1 =0

t2 =0

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2

Thread twoStage Thread

1: lock(m1l); 7. lock(m1l);

2: vall =1; 8: if (vall == 0) {
3: unlock(m1l); O: unlock(m1);
4: lock(m2); 10: return NULL; }
5: val2 =vall + 1; 11: t1 = vall;

6: unlock(m?2); 12: unlock(m1);

13: lock(m2);
program counter: 2 14: t2 = val2;
mutexes: mi=1 m2=0 15: unlock(m2);
globals: vall=1 val2 =0 16: assert(t2==(t1+1));
locals: t1 =0 t2 =0




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2-3

Thread twoStage
lock(m1);
vall = 1;

: unlock(m1);
: lock(m2);

: unlock(m2);

: val2 =vall + 1;

program counter: 3
mutexes: mi =0
globals: vall =1
locals: t1 =0

m2=0
val2 =0
t2 =0

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2-3—

Th read twoStage
lock(m1); CS1

. vall = 1; ]
unlock(ml);

lock(m2);

val2 = vall + 1;
unlock(m2);

O\U1-|>(Ju)l\)l—L

program counter: /

mutexes: ml1l =1 m2=20
globals: wvall =1 wval2 =0
locals: t1 =0 t2 =0

Thread

8:
9:

10:
11:
12:
13:
14:
15:
16:

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1. 1-2-3—/-

Thread twoStage Thread

1: lock(m1); CS1 | —|7: lock(ml);

2: vall =1, /

3: unlock(ml); O: unlock(m1);
4: lock(m2); 10: return NULL; }
5: val2 =vall + 1; 11: t1 = vall;

6: unlock(m?2); 12: unlock(m1l);

13: lock(m?2);
program counter: 8 14: 12 = val2;
mutexes: mi=1 m2=0 15: unlock(m2);
globals: vall =1 val2 =0 16: assert(t2==(t1+1));
locals: t1 =0 t2 =0




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3—/-8-

Thread twoStage
lock(m1);

: vall = 1;
unlock(ml);
lock(m2);

val2 = vall + 1;
unlock(m2);

O\U1-|>(Ju)l\)l—L

CSl1

/

program counter: 11
mutexes: mil=1

m2=20

globals: wvall =1 wval2 =0

locals: t1 =1

t2 =0

Thread

/:
8:
9:

10:

12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

unlock(m1);
lock(m2);

t2 = val2;
unlock(m2);
assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3—/-8-

Thread twoStage
lock(m1);

: vall = 1;
unlock(ml);
lock(m2);

val2 = vall + 1;
unlock(m2);

O\U1-|>(Ju)l\)l—L

CSl1

/

/7

program counter: 12
mutexes: mi =0

m2=20

globals: wvall =1 wval2 =0

locals: tl1 =1

t2 =0

Thread

/:
8:
9:

10:
11:

13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

lock(m2);

t2 = val2;
unlock(m2);
assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3—/-8-

-12-4

Th read twoStage
lock(m1); CS1

vall = 1; ]

unlock(ml);
: lock(m2);
val2 = vall + 1; \

unlock(m2);

O\U1.hw|\)|—L

/7

CS2

program counter: 4

mutexes: mi=0 m2=1
globals: wvall =1 wval2 =0
locals: t1 =1 t2 =0

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3-/-8-11-12-4-5

Thread twoStage Thread

1: lock(m1); CS1 | —|7: lock(ml);

2: vall = 1; ] 8: if (vall ==0) {
3: unlock(ml); 9: unlock(m1);
4: lock(m?2); cs2|10:  return NULL; }
5: val2 = vall + 1; \\ 11: t1 = vall;

6: unlock(m?2); 12: unlock(m1);

13: lock(m2);
program counter: 5 14: t2 = valZ;
mutexes: m1=0 m2=1 15: unlock(mz2);
globals: vall =1 val2=2 16: assert(t2==(t1+1));

locals: tl1 =1 t2 =0




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3—/-8-

-12-4-5-6

Thread twoStage

1:

lock(m1);

2: vall =1;

3: unlock(ml);
4.
5
6

lock(m2);

: val2 =vall + 1;
: unlock(m2);

CSl1

/
\

/7

CS2

program counter: 6
mutexes:

globals: vall =1
locals: t1 =1

mli=0 m2=0
val2 =2

t2 =0

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2-3—/-8-11-12-4-5-6—

Thread twoStage Thread

1: lock(m1); CS1 | —|7: lock(ml);

2: vall = 1; ] 8: if (vall ==0) {

3: unlock(ml); 9: unlock(m1);

4: lock(m?2); 10: return NULL; }

5: val2 =vall + 1; Z}g 11: t1 = vall;

6: unlock(m?2); —_ 12: unlock(m1);
—

program counter: 13 14: t2 = valZ;

mutexes: m1=0 m2=1 15: unlock(mz2);

globals: vall =1 wval2 =2
locals: t1 =1 t2 =0

16:

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2-3—/-8-11-

Thread twoStage

1: lock(m1l); CS1 | —

2: vall = 1; /

3: unlock(ml);

4: lock(m2); CS2

5: val2 = vall + 1; Zﬁ\

6: unlock(m2); —_—
—

program counter: 14

mutexes: m1l=1 m2=1

globals: vall =1 wval2 =2

locals: t1 =1 t2=2

—4-5-6—

Thread

7: lock(m1l);

8: if(vall ==0){
9: unlock(m1);
10: return NULL; }
11: t1 = vall;

12: unlock(m1);

13: lock(m?2);

15:
16:

unlock(m2);
assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

interleaving #1: 1-2-3—/-8-

Thread twoStage

1: lock(m1); CS1

2: vall =1; /
3: unlock(ml);

4: lock(m2);

5: val2 =vall + 1; Zﬁ
6: unlock(m2);

\

/7

CS2

program counter: 15

mutexes: mili=1 m2=0
globals: vall =1 wval2 =2
locals: t1 =1 t2 =2

—4-5-6—

Thread

7: lock(m1l);

8: if(vall ==0){
9: unlock(m1);
10: return NULL; }
11: t1 = vall;

12: unlock(m1);

13: lock(m2);

14: t2 = val2;

16:

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #1: 1-2-3—-/-8-11-12-4-5-6-13-14-15-16

Thread twoStage

proaaram ool tinfFor- 14

QF formula is unsatisfiable,

l.e., assertion holds

/

/7

1: lock(m1l); CS1

2: vall =1;

3: unlock(ml\:

4: lock

5. yal2l Interleaving completed, so
6: unlg call single-threaded BMC

| 16: assert(t2=

Thread reader

7: lock(m1l);

8: if(vall ==0){

9: unlock(m1);

1 . .

1 ...So try next interleaving
1

14: ¥ val2;

12dnlock(m?2);
=(tl1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2:

Thread twoStage
lock(m1);

: vall = 1;
unlock(ml);
lock(m2);

O\U1-|>(Ju)l\)l—L

unlock(m2);

val2 = vall + 1;

program counter: 0
mutexes: m1=20

m2=20

globals: wvall =0 wval2 =0

locals: t1 =0

t2 =0

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2: 1-2-3

Thread twoStage
: lock(m1l);

: vall = 1;

: unlock(m1l);
lock(m2);

_O_\_Uj:I}wNH

unlock(m2);

val2 = vall + 1;

program counter: 3

mutexes: ml1=20
globals: vall =1
locals: t1 =0

m2=0
val2 =0
t2 =0

Thread

7: lock(m1l);

8: if(vall ==0){
9: unlock(m1);
10: return NULL; }
11: t1 = vall;

12: unlock(m1);

13: lock(m2);

14: t2 = val2;

15: unlock(m?2);

16: assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2: 1-2-3—

Th read twoStage
lock(m1); CS1

. vall = 1; ]
unlock(ml);

lock(m2);

val2 = vall + 1;
unlock(m2);

O\U1-|>(Ju)l\)l—L

program counter: /

mutexes: ml1l =1 m2=20
globals: wvall =1 wval2 =0
locals: t1 =0 t2 =0

Thread

8:
9:

10:
11:
12:
13:
14:
15:
16:

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2: 1-2-3—/-8-11-12-13-14-15-16

Thread twoStage
lock(m1);

: vall = 1;
unlock(ml);
lock(m2);

val2 = vall + 1;
unlock(m2);

O\U1-|>LMI\)I—L

CSl1

/

/7

program counter: 16
mutexes: m1=20

m2=20

globals: wvall =1 wval2 =0

locals: tl1 =1

t2 =0

Thread reader

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);
if (vall ==0) {
unlock(m1);
return NULL; }
tl = vall;
unlock(m1l);
lock(m2);
t2 = val2;
unlock(mz2);
assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2: 1-2-3-/-8-11-12-

Thread twoStage
lock(m1);
vall = 1;
unlock(ml);
: lock(m2);

O\U1.hw|\)|—L

unlock(m2);

val2 = vall + 1;

CSl1

/7

N\ CS2

program counter: 4
mutexes:
globals:
locals:

vall =1
t1 =1

mli=0 m2-=1
val2 =0
t2 =0

AN

—4

Thread

/:
8:
9:

10:
11:
12:
13:
14:
15:
16:

lock(m1);

if (vall ==0) {
unlock(m1);
return NULL; }

tl1 = vall;

unlock(m1);

lock(m2);

t2 = val2;

unlock(m2);

assert(t2==(t1+1));




Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and
call the BMC procedure on each interleaving

Interleaving #2: 1-2-3—-/-8-11-12-13-14-15-16-4-5-6

Thread twoStage

1: lock(m1): interleaving completed, so

2: vall = 1; call single-threaded BMC (again) |({

3: unlock(ml); > GTToC L))

4: lock(m2); 5 17 ' B
5: val2 = vall + 1~ 1 ...so found a bug for a
6: unlock(m2); \ 1 specific interleaving

\.CS2|1

N\

r ‘ = 14: * vd|2,
| QF formula is satisfiable, \ 1Z—dnlock(m2);

( i.e.. assertion fails '16: assert(t2==(t1+1));
I




Results on SV-COMP’20 Benchmarks with
Reachable Error Label

CBMC 5.4 CBMC 5.28 CBMC 5.28 (K)
sub-category files lo.c. || pass miss error t.o. time | pass miss error t.o. time | pass miss error t.o. time
ldv-races 8 669 3 5 - - 0.8 8 - - - 0.4 8 - - - 0.6
pthread 20 1,906 17 - 2 1 142.4 8 - 11 1 159.6 3 - 11 1 103.5
pthread-atomic 2 182 2 - - - 0.7 2 - - - 0.8 2 - - - 0.7
pthread-c-dac 1 1,347 1 - - - 6.4 - - 1 - 0.1 - - 1 - 0.1
pthread-complex 4 663 - 1 - 3 81838 - - 3 1 250.1 - - 3 1 2502
pthread-divine 7 440 1 5 - 1 1446 6 - 1 - 0.7 6 - 1 - 1.4
pthread-driver-races 4 1,216 3 1 - - 1.2 4 - - - 16.2 4 - - - 18.8
pthread-ext 8 253 7 - - 1 276.6 7 - - 1 275.0 8 - - - 18.4
pthread-lit 3 111 2 - - 1 3336 2 - - 1 3334 2 - - 1 3335
pthread-nondet 3 83 3 - - - 1729 3 - - - 2048 3 - - - 2814
pthread-wmm 754 150,270 || 754 - - - 0.6 | 754 - - - 03| 754 - - - 0.6
Totals 814 157,602 || 793 12 2 7 19.9 | 794 - 16 4 10.2 | 795 - 16 3 6.9

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:
Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.
Program. Lang. Syst. 44(1): 1:1-1:50 (2022)



Results on SV-COMP’20 Benchmarks with
Reachable Error Label

ESBMC 6.4 SMACK 2.4.0 Yogar-CBMC
sub-category files lo.c. || pass miss error t.o. time | pass miss error t.o. time | pass miss error t.o. time
ldv-races 8 669 8 - - - 0.3 7 1 - - 35.6 4 - 4 - 2.1
pthread 20 1,906 12 3 2 3 2305 8 6 - 6 3822 13 - 7 - 52.1
pthread-atomic 2 182 2 - - - 48.7 2 - - - 48.1 1 - 1 - 1.5
pthread-c-dac 1 1,347 - - - 1 1,004.5 - 1 - - 3.6 1 - - - 3.5
pthread-complex 4 663 1 - 2 1 6069 1 2 - 1 2613 - - 4 - 5.1
pthread-divine 7 440 6 - 1 - 101.3 4 2 - 1 1509 1 - 6 - 2.8
pthread-driver-races 4 1,216 4 - - - 4.3 - 4 - - 22.8 4 - - - 0.8
pthread-ext 8 253 8 - - - 0.1 1 7 - - 4.9 5 - 3 - 0.4
pthread-lit 3 111 2 - - 1 3335 1 1 - 1 33838 3 - - - 26.0
pthread-nondet 3 83 3 - - - 0.2 1 1 - 1 3370 3 - - - 4.5
pthread-wmm 754 150,270 || 754 - - - 42.3 | 254 8 - 492 795.2 - - 754 - 0.7
Totals 814 157,602 (| 800 3 5 6 52.8 | 279 33 - 502 746.2| 35 - 779 - 4.9

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:
Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.
Program. Lang. Syst. 44(1): 1:1-1:50 (2022)



Results on SV-COMP’20 Benchmarks with
Reachable Error Label

CPAchecker 1.9 (CPA-Seq) Divine 4.4.0 UL-CSeq
sub-category files l.o.c. || pass miss error t.o. time | pass miss error t.o. time | pass miss error t.o. time
ldv-races 8 669 3 - > - 4.3 > 3 - - 2.9 8 - - - 146.1
pthread 20 1,906 9 - 11 - 121.8 11 1 8 - 139.9 10 - 1 9 487.2
pthread-atomic 2 182 2 - - - 20.0 1 - 1 - 48.2 2 - - - 39.0
pthread-c-dac 1 1,347 - - 1 - 915.6 - - - 1 1,000.2 - - - 1 1,000.0
pthread-complex 4 663 - - 4 - 3328 1 - 1 2 5021 - - - 4 1,000.0
pthread-divine 7 440 2 - 5 - 7.2 1 - 3 - 3.4 3 - 4 - 14.6
pthread-driver-races 4 1,216 - - 4 - 1120 - - 3 1 2515 - - 4 - 0.5
pthread-ext 8 253 - - 8 - 4.0 2 - > 1 127.5 8 - - - 28.7
pthread-lit 3 111 1 - 2 - 3.6 1 - - 1 335.2 2 - - 1 334.8
pthread-nondet 3 83 - - 3 - 3.5 - 1 - - 2.4 - 3 - - 3405
pthread-wmm 754 150,270 626 - 46 82 173.1 | 548 3 - 4 41.6 | 754 - - - 35.7
Totals 814 157,602 643 - 89 82 168.6 | 573 210 21 10 49.3 | 787 3 9 15 35.3

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:
Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans.
Program. Lang. Syst. 44(1): 1:1-1:50 (2022)



White-box Fuzzing:
Bug Finding and Code Coverage

« Translate the program to an intermediate representation (IR)
« Add properties to check errors or goals to check coverage

« Symbolically execute IR to produce an SSA program

« Translate the resulting SSA program into a logical formula

« Solve the formula iteratively to cover errors and goals

 Interpret the solution to figure out the input conditions

« Spit those input conditions out as a test case

SSA
C and | | | SMT

Properties
and goals

Cover errors
or goals

Gadelha, M., Menezes, R., Cordeiro, L.; ESBMC 6.1: automated test
case generation using bounded model checking. Int. J. Softw. Tools
Technol. Transf. 23(6): 857-861 (2021).



* Use Clang tooling infrastructure
Fu Se B M C V4 * Employ three engines in its reachability
analysis: one BMC and two fuzzing engines
Framework

e Use a tracer to coordinate the various engines

Analysis and Injection Test-Generation

AFL Selgclive BMC
: Goal’s Graph concolic fuzzer
Analyze & Inject p

Instrumented | C Code

BMC/AFL

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

‘ C Code ‘H
Property \

Test-cases

Tracer

Import seeds
Goals Covered Array

Seeds K New seeds




Interval Analysis and Methods for
Automated Test Case Generation

ﬁSeB.\I(‘_IA: Interval Analysis and Methods for Test Case Genem

This combined method
can reduce CPU time,
memory usage, and
energy consumption

We advocate that
combining cooperative
verification and
constraint programming
IS essential to leverage a
modular cooperative
cloud-native testing
platform

Interval Analysis & Methods

Parse conditions & S : : o8
[ Create CSP/CP }—* Domains reduction —-[ Apply Contractors
= i

................. g

- -
-
-

1! (Frama-C eva)

[ o= o= o= - -
_ ’:. Static Analyser '

Intervals files J_ 3

/FuSeBM(‘ v4

FuSeBMC analysis

Seed Generation

BMC/AFL

P

J
Test-Generation \

{

Selective]{ = }
B Engines
fuzzer :

b [y

8

C Code II

Y

Property

Aldughaim, M., Alshmrany, K., Gadelha, M., de Freitas, R., Cordeiro, L.: FuSeBMC_IA: Interval Analysis and Methods
for Test Case Generation - (Competition Contribution). FASE 2023: 324-329




Competition on Software Testing 2023:
Results of the Overall Category

0 WeriTest i—
uSeEMC —f—
~HIAC-1A
_— bridTiper ———
- FLEE wfi
Legian
USymMCC e—
000 P Test
P TTIDANC
TracerX
B VerFues
NASP-C ol
200
1500
1000
i
oy
0 ] :
L i
P _ e — __ﬂ_,_.—--'-"
N —

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in
Cover-Branches, and 1st place in Overall

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340 https://test-comp.sosy-lab.org/2023/



https://test-comp.sosy-lab.org/2023/

EBF: Black-Box Cooperative
Verification for Concurrent Programs

Safety Proving Stage Seed Generation Stage Falsification Stage
C program | | |
+ 3 3 Controlled 3 LLVM
Safety ! BMC 1 Errors Injection ! Instrumentations

s ( ; !

Sanitizers

Verdict Bug e %

Fuzzer

Fuzz Inputs

\ 4 Fuzz Delays
*************************** SRR Counter-
Results Aggregation Stage
example
OpenGBF ‘
Bug | Unknown | f

| Safe Conflict Safe Bug
: E Bug Unsafe | Unsafe ‘
| Unknown | Unsafe | Unknown . Verdict

Aljaafari, F., Shmarov, F., Manino, E.,
Menezes, R., Cordeiro, L.: EBF 4.2: Black-Box
Cooperative Verification for Concurrent
Programs - (Competition Contribution).
TACAS (2) 2023: 541-546



EBF 4.0 with different BMC tools

BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min

RAM limit is 15 GB per Benchexec run
ConcurrencySafety main from SV-COMP 2022

- Witness validation switched off
Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

Verification
outcome

EBF

Deagle

| EBF

Cseq

’l_’ool
EBF

ESBMC |

EBF

CBMC

Correct True
Correct False
Incorrect True
Incorrect False
Unknown

240

240

172

177

65

70

139

146

336

319

333

313

308

268

320

303

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

3

187

204

258

273

390

424

304

311

EBFA4.0 increases the number of detected bugs for BMC tools

EBFA4.0 provides a better trade-off between bug finding and safety
proving than each BMC engine




WolfMQTT Verification

 wWoIfMQTT library is a client implementation of the MQTT protocol written
In C for IoT devices

Int main () {
Ft’w%c«ﬂit thl, th2;
static MQTTCtx mgttCtx;

S ub S C r ibe t a S k ':it:’w7'%;:«tL:""%c:t% (&thl, subscribe task, &mgttCtx))

pthread create(&th2, waitMessage task, smgttCtx) )}

and wa l tMe SS age_t as ]{ are static void *subscribe task xclient) {

Ca.”ed through dlfferent threads Iff,llfil*’ﬁ (client, msg,MOTT PACKET TYPE ANY,

0,timeout ms);

accessing packe € ret, scatic void *waitMessage_task void vclient) |
CaUSIng a data race In :f‘lzi‘r‘.rf\;i:ﬁ‘l,f T.'F;%TT;Q; (client, msg, MQTT PACKET TYPE ANY,

0, timeout ms);

MqttCl ient_WaitType #tl int MgttClient WaitType *client,

*packet obj,

wailt type wait packet id timeout ms
{
H 1 h th rc = wm SemLock (&client->lockClient
ere is where the - wm_senloc
MgttClient RespList Find(cli t,
data race might P paletien

(MgttPacketType) walt _type,

happen! Unprotected  , ;”Zi;ii?fi;gii’etiiiZ?RTSp)> |

pOlnter rc = pendresp- packet ret;



Unprotected
pointer for the
status code

WolfMQTT Verification

MQTT Client

MQTT Client

After fixing the

concurrency
vulnerability

P
A

Sharing buffer
between clients

ACK

3

A

Buffer ACK

4

Data race might
happen if the broker
sends the status code

MQTT Broker

& MQTT Client

MQTT Client

To solve it they copied
the code status into
different buffers

D ACK 3

Butter |2~ =

ACK

Ter

4

MQTT Broker



Bug Report

Fixes for multi-threading issues #209

bSOl embhorn me rorm 7= 3 Juifi 2021
) Conversation 2 -o- Commits 1 FLC Files changed 4
o dgarske commer ntrioutor | ) +++ Reviewers
lygstate
1. The client lock is needed earlier to protect the "reset the packet state”.
; ; : bh
2. The subscribe ack was using an unprotected pointer to response code list. Now it makes a copy of those codes. 0 sanm
3. Add protection to multi-thread example "stop" variable.
Thanks to Fatimah Aljaafari (@fatimahkj) for the report. Assignees
ZD 12379 and PR () Data race at function MqttClient_WaitType #198 0 embhorn
Fixes for three multi-thread issues: X 7 ed
-0 0 Labels

Projects

ed embhorn on 2 Jun 2021

A/ @ dgarske as

Milestone

https://github.com/wolfSSL/wolfMOTT

¢> Code ~

+74 -48 mEEN


https://github.com/wolfSSL/wolfMQTT




Agenda

Intoduce typical BMC Architectures for Verifying Software
Systems

Software Verification and Testing with the ESBMC
Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

|

Towards Verification of Programs for CHERI Platforms with
ESBMC



Deep Learning and
Automated Program Repair

v
Fixed
code
No
Buggy Modified code effect
Original code (Potentially

DL Model fixed) Introduces
new errors

[1] Jin M, Shahriar S, Tufano M, Shi X, Lu S, Sundaresan N, Svyatkovskiy A. InferFix: End-to-End Program Repair with LLMs. arXiv e-prints. 2023
Mar:arXiv-2303.

[2] Li Y, Wang S, Nguyen TN. DlIfix: Context-based code transformation learning for automated program repair. InProceedings of the ACM/IEEE
42nd International Conference on Software Engineering 2020 Jun 27 (pp. 602-614).

[3] Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on
artificial intelligence 2017 Feb 12 (Vol. 31, No. 1).



Large Language Models and
Automated Program Repair

Buggy Original
code

[4] Wang X, Wang Y, Wan Y, Mi F, Li Y, Zhou P, Liu J, Wu H, Jiang X, Liu Q. Compilable neural code generation with compiler feedback.
arXiv preprint arXiv:2203.05132. 2022 Mar 10.

Language Model

Modified code
(Potentially fixed)

Feedback

No
effect

Introduces
new errors

[5] Xia CS, Zhang L. Conversational automated program repair. arXiv preprint arXiv:2301.13246. 2023 Jan 30.



Large Language Models and
Automated Program Repair

Buggy Original
code

Large

Language Model
(4, 5]

|

Modified code
(Potentially fixed)

E _ - :
| effect 5
L s O
: Introduces
! new errors :

- J

Compile-time error feedback misses run-time errors

Test suite may not be available

Feedback

/ O\



LLM + Formal Verification for
Self-Healing Software

Bounded Model Checker

(BMC)

Original

code

D ——— ————————————l

Code +
Property
violation

Large
Language Model

Modified code

[6] Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software
Security: Towards Self-Healing Software via Large Language Models and Formal Verification. Under

review at the ACM Transactions on Software Engineering and Methodology, 2023.



LLM + Formal Verification for
Self-Healing Software

= >4 ESBMC - - -
= Code + .
Original 4 Property

code ‘ violation Modified code

Large

Language Model




LLM to Find Software Vulnerabilities

C++ program example

int main() ( While we were In the process of preparing
o e this presentation, if we asked GPT-3.5 “Is
e ke e L there any problem with this code ?”, the
priner(iiesuit sdnt, 1 response was an incorrect answer:

}

GPT-3.5 turbo

“There is no problem with this code. The code cor-
rectly calculates the value of z as the square of y
and then calculates the value of r as z divided by
1000. Finally, the code prints the result of r to the
console. The calculations do not result in an integer
overflow or any other issues, and the program should
run correctly.”




LLM + Formal Verification for
Self-Healing Software

Corrected C++ program

C++ program example int main () {
int main () { int x = ’ B 3
Gl s=T77¢ long long int y = (long long int)
int y=x*x+x; o X * X * x;_
int z=y*y; — ESBMG—D > long long int z = y * y;
unsigned int r= z/1000; A unsigned int r = z / 1000;
printf ("Result %d\n", r); Violated property: printf ("Result %d\n", r);
return 0; file test.c line 4
' function main return 0;
! arithmetic J
overflow on mul GPT-3.5 turbo ) ’
loverflow(”*”,y, y)




Experimental Evaluation

Set-up

Code Generation

* Processor: AMD Ryzen
Threadripper PRO 3995WX

* Cores: 16

« RAM: 256 GB

Code Repair

* Model: MacBook Pro (2017)

* RAM: 16 GB RAM of
LPDDR3 RAM (2133 MHz)

* Processor: 2.5 GHz Intel
Core i7-7660U

Benchmarks

Code generation prompt

Generate a minimum of 10 and a maximum of 50 lines
of C code. Use at least two functions. Use strings,
arrays, bit manipulations, and string manipulations
inside the code. Be creative! Always include every
necessary header. Only give me the code without any
explanation. No comment in the code.

Objectives

RQ1: (Code generation) Are the state-
of-the-art GPT models capable of
producing compilable, semantically
correct programs?

RQ2: (Code repair) Can external
feedback improve the bug detection
and patching ability of the GPT
models?



Experimental Results

10 to 50 lines of
compilable C code RQ1

l 99.9% compilable programs

=5 esamc—2 .

Code +
Property

Original violation
code

{

SN

80% of the generated code buffer overflow and dereference failures
could be fixed in a maximum of three iterations

Modified code

GPT-3.5 turbo




Generative Al through the Lens of
Formal Verification

« The first Al-generated repository consisting of 112k independent and
compilable C programs

GPT-3.5-turbo

Non-

type N X Compilable
c= B ad
template C code \ . Module
syie
./ - ESBMC-7.2  Compilable
T a Verification Failgd} ) T
T Property violation H EaCh prog ram
Eg}, o] Vefeation | @ <« < varies between 50
FormAl BMC FormAl and 600 lines
csv ﬁ Unknown} Module Dataset
* Programming tasks from network management and table games to
Strl n g m an I p u I atl 0 n Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M., Cordeiro, L., Mavroeidis,

V.: The FormAl Dataset: Generative Al in Software Security Through
the Lens of Formal Verification. Accepted at ACM PROMISE, 2023



Table game
\\
G(a:n\_a{‘on Wt »
-
0" {\c’ﬁQ 0?9’)2‘5:5}’5'0,"
s O
ipu
ma™® [Type]
Memory Sorting
management Vstem,
fnfsrra ti
File
hand';mg

Ensure Diversity

Gte_a{'lqe
scientific

o
o [style]

authentic

realistic

multi-
threaded

Write a unique C sorting example program in a multi-threaded
style. Instructions: a. Minimum 50 lines. b. Be creative! c. Do not
say | am sorry. Always come up with some code. d. Make sure the
program compiles an}d runs without any errors. Please generate a
code snippet that starts with "¢ and ends with "*.

Proper prompt engineering is crucial
for achieving a diverse dataset

Each API call randomly chooses a
type from 200 options in the Type
category, including topics like Wi-Fi
Signal Strength Analyzer, QR Code
Reader, and others

Similarly, a coding style is selected
from 100 options in the Style category
during each query



Comparison of Various Datasets Based
on their Labeling Classifications

bt O s W fwm NG TG R oc e
Big-Vul b 4 Real-World 188,636 100% X X/Func. CVE/CVW 30 PATCH
Draper b 4 Syn.+Real-World 1,274,366 5.62% v X/Func. CWE 29 STAT
SARD b 4 Syn.+Real-World 100,883 100% b 4 v//Prog. CWE 114 BDV+STAT+MAN
Juliet X Synthetic 106,075 100% b 4 v//Prog. CWE 125 BDV
Devign X Real-World 27,544 46.05% b 4 X/Func. CVE 112 ML
REVEAL b 4 Real-World 22,734 9.85% X X /Func. CVE 32 PATCH
DiverseVul } 4 Real-World 379,241 7.02% b 4 X /Func. CWE 44 PATCH
FormAl v Al-gen. 112,000 51.24% v v//Prog. CWE 79 ESBMC
Legend:

PATCH: GitHub Commits Patching a Vuln. Man: Manual Verification, Stat: Static Analyser, ML: Machine Learning Based, BDV: By design vulnerable



spaomiay

int

If

char -
return -
for -

void -
struct -
else -
break -
case -
sizeof -
while -
double -
float -
unsigned -
typedef -
switch -
default -
const -
bool -
continue -
lang -

do -
short -
enum -
static -
goto -
union -
volatile -
signed -
register -
extern -

auto -

FormaAl (Per Million LOC)  SARD (Per Million LOC)  BigWul (Per Million LOC)
' |

36826
33599
29002
19734
19052
17178
15804
12831
10488
9845
1297
5733
is
3066
2488
2055
1902
1640
1562
1198

1057

'
o

'
20000

31966

29693

C Keyword Frequency and
Assoclated CWEs

34812 101101

31189

3141
36716
3444
5087
9528
iBa
10298
1953
517
271
6862
379
171

13025

1807
20895
28113
16550
14886
17404

B912

3274

1839

1
40000 60000  BOODO 100000

(2po2 Jo s3UM Uol|I J3d) dewiesH Aduanbald piomAay abelany pazieuloN

ARQO C VF : Arithmetic overflow

BOF C VF : Buffer overflow on scanf () /fscanf ()
ABY C VF : Array bounds violated

DFN C VF : Dereference failure : NULL pointer
DFF C V.F : Dereference failure : forgotten memory
DFL C VF : Dereference failure : invalid pointer
DFA C VF : Dereference failure : array bounds violated
DBZ C VF : Division by zero

OTYVY C V.F : Other vulnerabilities

#Vulns Vuln. Associated CWE-numbers

88,049 BOF CWE-20, CWE-120, CWE-121, CWE-125, CWE-
129, CWE-131, CWE-628, CWE-676, CWE-680,
CWE-754, CWE-787

31,829 DFN CWE-391, CWE-476, CWE-690

24,702 DFA CWE-119, CWE-125, CWE-129, CWE-131, CWE-
755, CWE-787

23,312 ARO CWE-190, CWE-191, CWE-754, CWE-680, CWE-
681, CWE-682

11,088 ABY CWE-119, CWE-125, CWE-129, CWE-131, CWE-
193, CWE-787, CWE-788

9823 DFL CWE-416, CWE-476, CWE-690, CWE-822, CWE-
824, CWE-825

5810 DFF CWE-401, CWE-404, CWE-459

1620 oTV CWE-119, CWE-125, CWE-158, CWE-362, CWE-
389, CWE-401, CWE-415, CWE-459, CWE-416,
CWE-469, CWE-590, CWE-617, CWE-664, CWE-
662, CWE-685, CWE-704, CWE-761, CWE-787,
CWE-823, CWE-825, CWE-843

1567 DBZ CWE-369




The CWE Top 13

# ID Name
1 | CWE-787 | Out-of-bounds Write
5 CWE-79 Improper' Neutralization of Input During Web Page Generation (‘Cross-site
—— | Scripting’)
Improper Neutralization of Special Elements used in an SQL Command (‘'SQL
3 CWE-89 RSV
Injection’)
4 CWE-20 | Improper Input Validation
5 | CWE-125 | Out-of-bounds Read
Improper Neutralization of Special Elements used in an OS Command ('OS
6 CWE-78 L
Command Injection’)
7 | CWE-416 | Use After Free
8 CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal’)
9 | CWE-352 | Cross-Site Request Forgery (CSRF)
10 | CWE-434 | Unrestricted Upload of File with Dangerous Type
11 | CWE-476 | NULL Pointer Dereference
12 | CWE-502 | Deserialization of Untrusted Data
13 | CWE-190 | Integer Overflow or Wraparound

126


https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html

Which Parameters Are Most Effective?

Table: Classification results for different parameters

(ut) | VULN | kind | RUMMINE | ys | yE | TO | ER
time (m:s)
(2,1000) 2438 X 758:09 371 547 34 43
(3,1000) 2373 X 1388:39 366 | 527 57 50
(2,100) 2339 X 175:38 367 | 529 61 43
(2100) | 2258 | 400:54 | 340 | 603 | 20 | 37
(1,100) 2201 X 56:29 416 | 531 17 36
(1,30) 2158 v 146:13 349 | 581 34 36
(3,100) 2120 X 234:22 354 | 483 | 120 | 43
(1,30) | 2116 | X 30:57 | 416 | 519 | 30 | 35
(1,10) 2069 v 61:58 360 | 553 52 35
(1,10) 2038 X 19:32 413 | 503 51 33
(3,30) 1962 X 125:19 342 | 444 | 172 | 42
(11) | 1857 | 10:50 | 355 | 406 | 208 | 31
(11) | 1535 | X 6:22 395 | 374 | 201 | 30

v': Enabled, X: Disabled, (u,t) = unwind and timeout parameters

« We conducted experiments on 1,000
randomly selected samples

« The classification results showcase the
effects of different unwind (u) and time (t)
coupled with/without k-induction

* The detection results for parameter
selection of (u,t)=(1,10), (1,30), or
(1,100) without k-induction show that
Increasing the time threshold yields
diminishing returns for the same unwind
parameter

esbmc file.c --overflow --unwind 1 --memory-leak-check
-—timeout 3@ --multi-property ——-no-unwinding-assertions




Count

Code Repair Performance

FormAl dataset

Accuracy

1000 samples randomly
selected from 112k C programs

35.5%

Fix Code Attempts (No Failure Case)

140 +

120 +

100 4

80

60

40

20

Successful Trials in Each Category

357

30

array bounds viclated

25 7

dereference failure
buffer overflow on fscanf

buffer overflow on scanf

201

arithmetic overflow on sub
arithmetic overflow on floating-point ieee_div

successful Trials (%)
division by zero

10 7

arithmetic overflow on modulus

arithmetic overflow on floating-point ieee_mul
arithmetic overflow on mul

arithmetic overflow on add

arithmetic overflow on floating-point ieee_sub

arithmetic overflow on div

arithmetic overflow on floating-point ieee_add

arithmetic overflow on shl




FormAl Dataset - Availability

FORMAI DATASET: A LARGE COLLECTION OF AI-GENERATED C PROGRAMS AND
THEIR VULNERABILITY CLASSIFICATIONS

Citation Author(s): Norbert Tihanyi & (Technology Innovation Institute) B(ES 227 Views
Tamas Bisztray @ (University of Oslo) Categories: Artificial Intelligence
Ridhi Jain @ (Technology Innovation Institute) Security
Mohamed Amine Ferrag (& (Technology Innovation Institute) o ] -
Lucas C. Cordeiro @ (University of Manchester) Keywords: artificial intelligence, Software Vulnerability
Dataset

Vasileios Mavroeidis () (University of Oslo)
o r m Submitted by: Norbert Tihanyi

@ATA S E ._IT. Last updated: Tue, 09/26/2023 - 05:10
DOI: 10.21227/vp9n-wvS6
Data Format: *.csv (zip);
License: Creative Commons Attribution &@®

WIrW Y 0 ratings - Please login to submit your A, Access pataseT [l 99 cITe «© SHARE/EMBED

WARNING: BE CAREFUL WHEN RUNNING THE DATASETFILES

COMPILED PROGRAMS, SOME CAN CONNECT TO ¢ FormAl dataset: Vulnerability Classification (No C source code
THE WEB, SCAN YOUR LOCAL NETWORK, OR included) FormAl_dataset_human_readable-V1.csv (15.95
DELETE A RANDOM FILE FROM YOUR FILE MB)

SYSTEM. ALWAYS CHECK THE SOURCE CODE
AND THE COMMENTS IN THE FILE BEFORE
RUNNING IT!!

¢ FormAl dataset: 112000 compilable Al-generated C code
FormAl_dataset_C_samples-V1.zip (97.61 MB)

* FormAl dataset: Vulnerability Classification (C source code
included in CSV) FormAl_dataset_classification-V1.zip (60.66
MB)

https://github.com/FormAl-Dataset



https://github.com/FormAI-Dataset

Agenda

Intoduce typical BMC Architectures for Verifying Software
Systems

Software Verification and Testing with the ESBMC
Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

Towards Verification of Programs for CHERI Platforms with
ESBMC

|




Capability Hardware Enhanced
RISC Instructions (CHERI)

63

permissions (15 bits)

reserved

base and bounds (41 bits)

pointer address (64 bits)

CHERI 128-bit capability

CHERI Clang/LLVM and LLD?! - compiler

and linker for CHERI ISAs

Ihttps://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

CheriBSD? - adaptation of FreeBSD to
support CHERI ISAs

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello?3 - SoC development board

with a CHERI-extended ARMvS8-A

processor

Shttps://www.arm.com/architecture/cpu/morello

Mnemonic Description

CGetBase Move base to a GPR

CGetLen Move length to a GPR

CGetTag Move tag bit to a GPR

CGetPerm Move permissions to a GPR

CGetPCC Move the PCC and PC to GPRs

ClIncBase Increase base and decrease length

CSetLen Set (reduce) length

CClearTag Invalidate a capability register

CAndPerm Restrict permissions

CToPtr Generate C0-based integer pointer from
a capability

CFromPtr ClncBase with support for NULL casts

CBTU Branch if capability tag is unset

CBTS

Branch if capability tag is set

T




CHERI-C program

#include <stdlib.h>
#include <string.h>

#include <cheri/cheric.h>}€—

CHERI-C API

void main() {

int n = nondet uint() % 1024;
char a[n+1])*__capability|b 5 cheri_ptr|a

b[n] =17; T

/* models arbitrary user input */

/* succeeds */

char *_capabilityjc 4 cheri_setboundg(b-1, n); /* fails: not the same object */
/¥ . %/ /* more CHERI-C API checks */
memset_c(c, 42, n|; /* setting memory through a capability */

New capability types



Pure-capability CHERI-C model

#include <stdlib.h> #include <string.h>
#include <string.h> #include <stdio.h>

#include <cheri/cheric.h>
void main(void) {
void main() { int n = nondet_uint() % 1024;

int n = nondet_uint() % 1024; 4/313@4-1-]- *b =a;
char a[n+1]|*__capability b = cheri_ptr(a, n+1); b[n]=17;
b[n]=17; 4/dta1- *c=Db-1;
cha‘*__capability c = cheri_setbounds(b-1, n); memset(c, 42, n);

[* 0%/ }
memset_c(c, 42, n);
}
All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM

compiler




ESBMC-CHERI

External Memory Correctness
Libraries Model Proof
Scan ST
clang \ v v 4+  ouT Property holds
Control-flow Symbolic
. formula
C Program Graph > P?oo-:a(\)m » Execution 4 > SSOIYI;
Generator 9 Engine v
S CHERI- T f v 4 Property is violated
can
Clang CHERI-C CHERI Violation
Memory
API Model Witness

/

CHERI Clang/LLVM
compiler

AN

* New capability types
« Tagged memory
« Capability dereferencing

Implement computational
model for CHERI-C API
functions inside ESBMC
(e.g., cheri_setbounds)

Braulle et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776



Vision: Automated Reasoning System for
Secure SW and Al

Develop an automated reasoning system for safeguarding
software and Al systems against security vulnerabilities
In an increasingly digital and interconnected world

Al code
Automated
Reasoning System
S:Ouége (ARS): Searching,
learning, memory
: and parallelization
Binary
code

Explainable
Behavior Correctness
Robustness

Code inspection
Static Analysis
Dynamic Analysis

Detection Vulnerability
classification
Severity
Likelihood
Remediation cost
Properties

Fault Localization
Fault Repair

Correction



10 Correct DB Incorrect 22
% 20 |- 17 7
3 13
£ 10k 9 - 9 9 -
3 3 1 9 5
ol 0 p= 0 — 0 0 0 0 0o |
2LS BRICK Bubaak CPAChecker ESBMC Mopsa PeSCo UAutomizer VeriAbsL
Preliminary results Missing verdicts
from SV-COMP’24 Existing software verifiers struggle on neural code! due to timeouts
(may still change) on many instances
L . Benchmark Cate Safe | Unsaf
Neural code challenges existing software verifiers: e Ay S R
q i s a1 ltidi onal math _functions 33 11
oat operations, calls to math.h, nested loops, multi-dimensional arrays. activation functions A0 16
hopfield nets 47 33
We release NeuroCodeBench, a benchmark of neural code verification: poly_approx 8 8
) . . reach prob_density 22 13
6 categories, 14 functions from math.h, 32 neural networks, 607 properties . :
’ : : . ’ : ! reinforcement_learning | 103 193
safe/unsafe verdicts are either known a priori or independently verified. Total 503 | 314




(Real) Impact: Students and Contributors

5 PhD theses
e 30+ MSc dissertations
« 30+ final-year projects

e GitHub:
= 35 contributors
= 22,160 commits
= 212 stars
= 84 forks

https://qgithub.com/esbmc/esbmc



https://github.com/esbmc/esbmc

Impact: Awards and Industrial Deployment

Distinguished Paper Award at ICSE'11
Best Paper Award at SBESC'15

Most Influential Paper Award at ASE'23
Best Tool Paper Award at SBSeg'23

« 29 awards from the international competitions on software verification (SV-
COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

« Bug Finding and Code Coverage 6
* Intel deploys ESBMC Iin production as one of its verification engines for
verifying firmware in C
* Nokia and ARM have found security vulnerabilities in C/C++ software

* Funded by government (EPSRC, British Council, Royal Society, CAPES,
CNPg, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)
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