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How much could software errors cost 

your business?

Poor software quality cost US companies $2.41 trillion in 

2022, while the accumulated software Technical Debt (TD) 

has grown to ~$1.52 trillion

TD relies on temporary easy-to-

implement solutions to achieve short-

term results at the expense of 

efficiency in the long run

The cost of poor software quality 

in the US: A 2022 Report



Objective of this talk

• Introduce a logic-based automated reasoning platform to find 

and repair software vulnerabilities

• Explain testing, verification, and repair techniques to build secure 

software systems

• Present recent advancements towards a hybrid approach to 

protecting against memory safety and concurrency 

vulnerabilities

Discuss automated testing, verification, and 

repair techniques to establish a robust foundation 

for building secure software systems



Can we leverage program analysis/synthesis

to discover and fix more software 

vulnerabilities than existing state-of-the-art 
approaches?

Research Questions

Given a program and a safety/security

specification, can we automatically verify that 
the program performs as specified?



ESBMC: An Automated Verification Platform

Logic-based automated reasoning for 

checking the safety and security of AI 

and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving 

towards correctness proof and bug hunting

www.esbmc.org
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Agenda

• Intoduce typical BMC Architectures for Verifying Software 

Systems

• Software Verification and Testing with the ESBMC 

Framework 

• Towards Self-Healing Software via Large Language Models 

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with 

ESBMC



SAT solving as enabling technology

unit propagation, 

conflict clauses and 

non-chronological 

backtracking



SAT Competition

http://www.satcompetition.org/

http://www.satcompetition.org/


Bounded Model Checking (BMC)
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SAT/SMT-based BMC tools for C

• CBMC (C Bounded Model Checker)

▪ http://www.cprover.org/

▪ SAT-based (MiniSat) “workhorse”

▪ also SystemC frontend

• ESBMC (The Efficient SMT-based Bounded Model Checker)

▪ http://esbmc.org

▪ SMT-based (Z3, Boolector, Yices, Bitbuwzla, MathSAT, etc)

▪ Clang frontend, Soot, Solidity, and Python

• LLBMC (Low-level Bounded Model Checker)

▪ http://llbmc.org

▪ SMT-based (Boolector or STP)

▪ uses LLVM intermediate language

⇒share common high-level architecture

http://www.cprover.org/
http://esbmc.org/
http://llbmc.org/


Typical Features for BMC Architectures

• Full language support

▪ bit-precise operations, structs, arrays, ...

▪ heap-allocated memory

▪ concurrency

• Built-in safety checks

▪ overflow, div-by-zero, array out-of-bounds indexing, ...

▪ memory safety: nil pointer deref, memory leaks, ...

▪ deadlocks, race conditions

• User-specified assertions and error labels

• Non-deterministic modelling

▪ nondeterministic assignments

▪ assume-statements



High-Level BMC Architectures

Parser Static Analysis

CNF-genSolver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

(bit blasting)

intermediate 

program

equations

(path and safety

conditions)



1. Simplify control flow 

2. Unwind all of the loops

3. Convert into single static assignment (SSA) form

4. Convert into equations and simplify

5. (Bit-blast)

6. Solve with a SAT/SMT solver

7. Convert SAT assignment into a counterexample

General Approach



• remove all side effects

▪ e.g., j = ++i; becomes i = i+1; j = i;

• simplify all control flow structures into core forms

▪ e.g., replace for, do while by while 

▪ e.g., replace case by if

• make control flow explicit

▪ e.g., replace continue, break by goto

▪ e.g., replace if, while by goto

Control flow simplifications



Demo: esbmc --goto-functions-only example-1.c

int main() {

int i,j;

for(i=0; i<6; i++) {

j=i;

}

assert(j==i);

return j;

}

main (c::main):

int i;

int j;

i = 0;

1: IF !(i < 6) THEN GOTO 2

j = i;

i = i + 1;

GOTO 1

2: ASSERT j == i 

RETURN: j

END_FUNCTION

int main() {

int i,j;

i=0;

while(i<6) {

j=i;

i++;

}

assert(j==i);

return j;

}

i++

Control flow simplifications



main (c::main):

int i;

int j;

i = 0;

1: IF !(i < 6) THEN GOTO 2

j = i;

i = i + 1;

GOTO 1

2: ASSERT j == i 

RETURN: j

END_FUNCTION

C := i1 = 0 
g1 = (i1>=6) ? true : false 
j1 = g1 ? j0 : i1 
i2 = g1 ? i1 + 1 
g2 = (i2 >=6) ? true : false 

j2 = g2 ? j1 : i2 
i2 = g2 ? i1 + 1 
…

g6 = (i6 >=6) ? true : false 
j6 = g6 ? j5 : i6 
i6 = g6 ? i5 + 1 
return1 = j6

P := (j6 == i6)

Control flow simplifications



Loop unwinding

• All loops are “unwound”, i.e., replaced by several guarded 

copies of the loop body

▪ same for backward gotos and recursive functions

▪ can use different unwinding bounds for different loops

⇒ Each statement is executed at most once

• to check whether unwinding is sufficient special “unwinding 

assertion” claims are added

⇒ If a program satisfies all of its claims and all

unwinding assertions then it is correct!



Loop unwinding

void f(...) {

...

while(cond) {

Body;

}

Remainder;

}



Loop unwinding
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if(cond) {

Body;

while(cond) {
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}

}

Remainder;

}

unwind one 
iteration
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Loop unwinding
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if(cond) {

Body;

if(cond) {

Body;
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}

}
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Loop unwinding

void f(...) {

...

if(cond) {

Body;

if(cond) {

Body;

if(cond) {

Body;

assert(!cond);

}

}

}

}

Remainder;

}

unwinding
assertion

unwind one 
iteration

unwind one 
iteration

unwind one 
iteration…

• unwinding assertion

▪ inserted after last 

unwound iteration

▪ violated if program runs 

longer than bound 

permits

⇒ if not violated: (real) 

correctness result!



Loop unwinding

void f(...) {

...

for(i=0; i<N; i++) {

...  

b[i]=a[i];

...

};

...

for(i=0; i<N; i++) {

...

assert(b[i]-a[i]>0);

...

};

...

Remainder;

}

• unwinding assertion

▪ inserted after last 

unwound iteration

▪ violated if program runs 

longer than bound 

permits

⇒ if not violated: (real) 

correctness result!

⇒what about multiple 

loops?

▪ use --partial-loops to 

suppress insertion

⇒unsound



Safety conditions

• Built-in safety checks converted into explicit assertions:

e.g., array safety: 

a[i]=...; 

⇒ assert(0 <= i && i < N); a[i]=...;

⇒ sometimes easier at intermediate representation

or formula level

e.g., word-aligned pointer access, overflow, ...



High-Level Architecture

Parser Static Analysis

CNF-genSolver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

(bit blasting)

intermediate 

program

equations

(path and safety

conditions)



Transforming straight-line 

programs into equations

• simple if each variable is assigned only once:

• still simple if variables are assigned multiple times:

introduce fresh copy for each occurrence (static single 

assignment (SSA) form)

x = a;

y = x + 1;

z = y – 1;

program constraints

x = a &&

y = x + 1 &&

z = y – 1

x = a;

x = x + 1;

x = x – 1;

program

x0 = a;

x1 = x0 + 1;

x2 = x1 – 1;

program in SSA-form



But what about control flow branches (if-statements)?

• for each control flow join point, add a new variable 

with guarded assignment as definition

▪ also called ϕ-function

if(v)

x = y;

else

x = z;

w = x;

if(v
0
)

x
0
= y

0
;

else

x
1
= z

0
;

w
1
= ?

introduce & use 
new variable

Transforming loop-free 

programs into equations
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with guarded assignment as definition
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x = y;

else
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x
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;

else
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= z

0
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x
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0
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introduce & use 
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Transforming loop-free 

programs into equations



Bit-blasting

Conversion of equations into SAT problem:

• simple assignments:

|[ x = y ]| ≙ ⋀i xi ⇔ yi

⇒static analysis must approximate effective bitwidth well

• ϕ-functions:

|[ x = v ? y : z ]| ≙ (v ⇒ |[ x = y ]|) ⋀ (¬ v ⇒ |[ x = z ]|) 

• Boolean operations: 

|[ x = y | z ]| ≙ ⋀i xi ⇔ (yi⋁ zi)

Exercise: relational operations

effective 
bitwidth



Bit-blasting arithmetic operations

Build circuits that implement the operations!

1-bit addition:

Full adder as CNF:



Build circuits that implement the operations!

⇒adds w variables, 6*w clauses

⇒multiplication / division much more complicated

Bit-blasting arithmetic operations



Handling Arrays

Arrays can be replaced by individual variables,

with a “demux” at each access:

⇒surprisingly effective (for N<1000) because value

of i can often be determined statically

– due to constant propagation

int a[10];

...

x = a[i];

int a
0
, a

1
, a

2
, ... a

9
;

...

x = (i==0 ? a
0

: (i==1 ? a
1

: (i==2 ? a
2

: ...);



Handling Arrays with Theories

Arrays can be seen as ADT with two operations:

• read: Array x Index → Element

• write: Array x Index x Element → Array

Axioms describe intended semantics:

⇒requires support by SMT-solver

“select”

“update”

...

a[i]=a[i]+1;

...

...

a
1
=write(a

0
,i,read(a

0
,i)+1);

...



SAT vs. SMT 

BMC tools use both propositional satisfiability (SAT) and 

satisfiability modulo theories (SMT) solvers:

• SAT solvers require encoding everything in CNF

▪ limited support for high-level operations

▪ easier to reflect machine-level semantics

▪ can be extremely efficient (SMT falls back to SAT)

• SMT solvers support built-in theories

▪ equality, free function symbols, arithmetics, arrays,...

▪ sometimes even quantifiers

▪ very flexible, extensible, front-end easier

▪ requires extra effort to enforce precise semantics

▪ can be slower



Satisfiability Modulo Theories

• SMT decides the satisfiability of first-order logic formulae using 

the combination of different background theories (building-in 

operators)

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined theories (j  k  a[j]=2)  a[i] < 3



Satisfiability Modulo Theories

• let a be an array, b, c and d be signed bit-vectors of width 16, 32 and 32 

respectively, and let g be an unary function.

b' extends b to the signed equivalent bit-vector of size 32

replace b' by c−3 in the inequality

using facts about bit-vector arithmetic



Satisfiability Modulo Theories

applying the theory of arrays

( ) ( ) 413112 :4 −=+− dccggstep

The function g implies that for all x and y, 

if x = y, then g (x) = g (y) (congruence rule).

10)d 5,(c AT :5 ==Sstep

• SMT solvers also apply:

– standard algebraic reduction rules 

– contextual simplification

falsefalser 

( ) ( )777 paapa == 

( )( )( ) ( ) 41331,12,, :3 −=+−=− dcccgccastoreselectgstep



Modeling with non-determinism

Extend C with three modelling features:

• assert(e): aborts execution when e is false,

no-op otherwise

• nondet_int(): returns non-deterministic int-value

• assume(e): “ignores” execution when e is false,

no-op otherwise

void assert (_Bool e) { if (!e)  exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ;  }



General Approach

• Use a C program to set up the structure and deterministic 

computations

• Use non-determinism to set up search space

• Use assumptions to constrain search space

• Use failing assertion to start the search

int main() {

int x=nondet_int(),y=nondet_int(),z=nondet_int();

__ESBMC_assume(x > 0 && y > 0 && z > 0);

__ESBMC_assume(x < 16384 && y < 16384 && z < 16384);

assert(x*x + y*y != z*z);

return 0;

}



Agenda

• Intoduce typical BMC Architectures for Verifying Software 

Systems

• Software Verification and Testing with the ESBMC 

Framework 

• Towards Self-Healing Software via Large Language Models 

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with 

ESBMC



Software BMC 

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”); 

} 

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}
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Software BMC 

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds                                            
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Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”); 

} 

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial



Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”); 

} 

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}
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Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P
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Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories
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Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P
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void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”); 

} 

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for 

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)



k-induction checks loop-free programs...

• base case (basek): find a counter-example with up to k loop unwindings

(plain BMC)

• forward condition (fwdk): check that P holds in all states reachable 

within k unwindings

• inductive step (stepk): check that whenever P holds for k unwindings, it 

also holds after next unwinding

– havoc variables

– assume loop condition

– run loop body (k times)

– assume loop termination

⇒ iterative deepening if inconclusive Gadelha, M., Ismail, H., Cordeiro, L.: Handling loops in bounded 

model checking of C programs via k-induction. Int. J. Softw. Tools 

Technol. Transf. 19(1): 97-114 (2017)

Induction-Based Verification for Software



unsigned int x=*;
while(x>0) x--;
assume(x<=0);
assert(x==0);

k=1

while k<=max_iterations do

if baseP,,k then

return trace s[0..k]  

else

k=k+1

if fwdP,,k then

return true

else if stepP’,,k then

return true

end if

end

return unknown

unsigned int x=*;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=*;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Induction-Based Verification for Software



• Infer invariants based on intervals as abstract domain via 

a dependence graph

– E.g., a ≤ x ≤ b (integer and floating-point)

– Inject intervals as assumptions and contract them via CSP

– Remove unreachable states

Automatic Invariant Generation

k-Induction can prove the correctness of more 

programs when the invariant generation is enabled

Line Interval for “a” Restriction

4 (−∞,+∞) None

6 (−∞, 100] 𝑎 ≤ 100

7 (100, +∞) 𝑎 > 100

k-Induction proof rule 

“hijacks” loop conditions 

to nondeterministic 

values, thus computing 

intervals become 

essential

Gadelha, M., Monteiro, F., Cordeiro, L., 

Nicole, D.: ESBMC v6.0: Verifying C 

Programs Using k-Induction and Invariant 

Inference - (Competition Contribution). 

TACAS (3) 2019: 209-213



Computing Intervals

• Restrictions are computed through 

intersection:

(−∞,∞) ∩ (−∞,50) = (−∞,  50)

(−∞,∞) ∩ [50,∞) = [50,∞)

• Merging is computed with the Hull operation:

[3,3] ⊔ [5,5] = [3,5]

• In ESBMC, the interval has:

– Lower: represents the lower bound of the interval (or infinity)

– Upper: represents the upper bound of the interval (or infinity)

– Lower is always less or equal than upper



Computing Intervals



BMC of Software Using Interval 

Methods via Contractors

Apply 
Contractor

Domain:

Constraint:

1) Analyze intervals and properties 
– Static Analysis / Abstract 

Interpretation

2) Convert the problem into a CSP
– Variables, Domains and Constraints

3) Apply contractor to CSP
– Forward-Backward Contractor

4) Apply reduced intervals back to 

the program

__ESBMC_assume(y <= 30 && y >= 20);

This assumption prunes our 

search space to the orange area



Intl. Software Verification Competition 
(SV-Comp 2023)

• SV-COMP 2023, 23805 verification tasks, max. score: 38644

• ESBMC solved most verification tasks in  10 seconds

Verification of the Overall Category

ESBMC

CBMC
2LS

UAutomizer



Concurrency verification

Writing concurrent programs is DIFFICULT

• programmers have to guarantee

▪ correctness of sequential execution

of each individual process

▪ with nondeterministic interferences

from other processes (schedules)

• rare schedules result in errors that are difficult

to find, reproduce, and repair

▪ testers can spend weeks chasing a single bug

⇒ huge productivity problem 

communication mechanism

…

P2 PN
P2

processes



Concurrency Errors

There are two main kinds of concurrency errors:

• progress errors: deadlock, starvation, ...

▪ typically caused by wrong synchronization

▪ requires modeling of synchronization primitives

o mutex locking / unlocking

▪ requires modeling of (global) error condition

• safety errors: assertion violation, ...

▪ typically caused by data races (i.e., unsynchronized access to shared 

data)

▪ requires modeling of synchronization primitives

▪ can be checked locally

⇒ focus here on safety errors



Shared memory concurrent 

programs

Concurrent programming styles:

• communication via message passing

▪ “truly” parallel distributed systems

▪ multiple computations advancing simultaneously

• communication via shared memory

▪ multi-threaded programs

▪ only one thread active at any given time (conceptually), but active thread can 

be changed at any given time 

o active == uncontested access to shared memory

o can be single-core or multi-core 

⇒focus here on multi-threaded, shared memory programs



Multi-threaded programs

• typical C-implementation: pthreads

• formed of individual sequential programs (threads)

▪ can be created and destroyed on the fly

▪ typically for BMC: assume upper bound

▪ each possibly with loops and recursive function calls

▪ each with local variables

• each thread can read and write shared variables

▪ assume sequential consistency: writes are immediately visible to all the 

other programs

▪ weak memory models can be modeled

• execution is interleaving of thread executions

▪ only valid for sequential consistency



Concurrency Verification 

Approaches

• Explicit schedule exploration (ESBMC)

▪ lazy exploration

▪ schedule recording

• Partial order methods (CBMC)

• Sequentialization

▪ KISS

▪ Lal / Reps (eager sequentialization)

▪ Lazy CSeq

▪ memory unwinding



Context-Bounded Model Checking in ESBMC

Idea: iteratively generate all possible interleavings and call 

the BMC procedure on each interleaving

... combines

• symbolic model checking: on each individual interleaving

• explicit state model checking: explore all interleavings

– bound the number of context switches allowed among threads

… implements

• symbolic state hashing (SHA1 hashes)

• monotonic partial order reduction that combines dynamic POR with 

symbolic state space exploration
Lucas C. Cordeiro, Bernd Fischer: Verifying multi-threaded software using 

smt-based context-bounded model checking. ICSE 2011: 331-340



execution paths

0 : tmain,0,

val1=0, val2=0, 

m1=0, m2=0,… 

1: ttwoStage,1,

val1=0, val2=0, 

m1=1, m2=0,… 

initial state
global and local variables

active thread, context-bound

CS1

syntax-directed 

expansion rules

CS2

Lazy Exploration of the Reachability Tree



execution paths

0 : tmain,0,

val1=0, val2=0, 

m1=0, m2=0,… 

1: ttwoStage,1,

val1=0, val2=0, 

m1=1, m2=0,… 

2: ttwoStage,2,

val1=1, val2=0, 

m1=1, m2=0,… 

CS1

syntax-directed 

expansion rules

CS2

interleaving completed, so

call single-threaded BMC

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree



execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0, 

m1=0, m2=0,… 

1: ttwoStage,1,

val1=0, val2=0, 

m1=1, m2=0,… 

2: ttwoStage,2,

val1=1, val2=0, 

m1=1, m2=0,… 

3: treader,2,

val1=0, val2=0, 

m1=1, m2=0,… 

CS1

CS2

backtrack to last unexpanded node 

and continue

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree



execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0, 

m1=0, m2=0,… 

1: ttwoStage,1,

val1=0, val2=0, 

m1=1, m2=0,… 

2: ttwoStage,2,

val1=1, val2=0, 

m1=1, m2=0,… 

3: treader,2,

val1=0, val2=0, 

m1=1, m2=0,… 

CS1

CS2

backtrack to last unexpanded node 

and continue

symbolic execution can statically 

determine that path is blocked
(encoded in instrumented mutex-op)

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree



execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0, 

m1=0, m2=0,… 

1: ttwoStage,1,

val1=0, val2=0, 

m1=1, m2=0,… 

4: treader,1,

val1=0, val2=0, 

m1=1, m2=0,… 

2: ttwoStage,2,

val1=1, val2=0, 

m1=1, m2=0,… 

3: treader,2,

val1=0, val2=0, 

m1=1, m2=0,… 

5: ttwoStage,2,

val1=0, val2=0, 

m1=1, m2=0,… 

6: treader,2,

val1=0, val2=0, 

m1=1, m2=0,… 

CS1

CS2

initial state
global and local variables

active thread, context-bound

Lazy Exploration of the Reachability Tree



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

program counter: 0
mutexes: m1= 0 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program state;

(value of program counter

and program variables)

val1 and val2 should be 

updated synchronously



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

interleaving #1: 1

program counter: 1
mutexes: m1 =1 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 2
mutexes: m1= 1 m2= 0
globals: val1=1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #1: 1-2



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 3
mutexes: m1 =0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #1: 1-2-3



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 7
mutexes: m1 =1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #1: 1-2-3–7



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 8
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #1: 1-2-3–7-8



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 11
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 =1 t2 = 0

CS1

interleaving #1: 1-2-3–7-8-11



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 12
mutexes: m1 =0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

interleaving #1: 1-2-3–7-8-11-12



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 4
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 5
mutexes: m1= 0 m2= 1
globals: val1 = 1 val2=2
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4-5



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 6
mutexes: m1= 0 m2 =0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 0

CS1

CS2

interleaving #1: 1-2-3–7-8-11-12–4-5-6



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 13
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 0

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 14
mutexes: m1= 1 m2= 1
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 =2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 15
mutexes: m1= 1 m2 =0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14-15



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 16
mutexes: m1= 1 m2= 0
globals: val1 = 1 val2 = 2
locals: t1 = 1 t2 = 2

CS1

CS2
CS3

interleaving #1: 1-2-3–7-8-11-12–4-5-6–13-14-15-16

interleaving completed, so 

call single-threaded BMC 

QF formula is unsatisfiable,

i.e., assertion holds

...so try next interleaving



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

program counter: 0
mutexes: m1= 0 m2= 0
globals: val1 = 0 val2 = 0
locals: t1 = 0 t2 = 0

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

interleaving #2: 



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 3
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

interleaving #2: 1-2-3



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 7
mutexes: m1 =1 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 0 t2 = 0

CS1

interleaving #2: 1-2-3–7



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 16
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 4
mutexes: m1= 0 m2 =1
globals: val1 = 1 val2 = 0
locals: t1 = 1 t2 = 0

CS1
Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

CS2

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16–4



Lazy exploration of interleavings

Idea: iteratively generate all possible interleavings and 

call the BMC procedure on each interleaving

Thread reader
7:   lock(m1);
8:   if (val1 == 0) {
9:      unlock(m1);
10:    return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1)); 

program counter: 6
mutexes: m1= 0 m2= 0
globals: val1 = 1 val2 = 1
locals: t1 = 1 t2 = 0

CS1
Thread twoStage
1:  lock(m1);
2:  val1 = 1;
3:  unlock(m1);
4:  lock(m2);
5:  val2 = val1 + 1;
6:  unlock(m2);

CS2

interleaving #2: 1-2-3–7-8-11-12-13-14-15-16–4-5-6

interleaving completed, so

call single-threaded BMC (again)

QF formula is satisfiable,

i.e., assertion fails

...so found a bug for a 

specific interleaving



Results on SV-COMP’20 Benchmarks with 
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Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans. 

Program. Lang. Syst. 44(1): 1:1-1:50 (2022)
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Results on SV-COMP’20 Benchmarks with 
Reachable Error Label

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, Gennaro Parlato: 

Bounded Verification of Multi-threaded Programs via Lazy Sequentialization. ACM Trans. 

Program. Lang. Syst. 44(1): 1:1-1:50 (2022)



White-box Fuzzing: 

Bug Finding and Code Coverage

• Translate the program to an intermediate representation (IR)

• Add properties to check errors or goals to check coverage

• Symbolically execute IR to produce an SSA program 

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover errors and goals 

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and 
Java

IR Symex
SMT 

Solver

Cover errors 
or goals

Properties 
and goals

SSA

Gadelha, M., Menezes, R., Cordeiro, L.: ESBMC 6.1: automated test 

case generation using bounded model checking. Int. J. Softw. Tools 

Technol. Transf. 23(6): 857-861 (2021).



FuSeBMC v4 
Framework

• Use Clang tooling infrastructure

• Employ three engines in its reachability 
analysis: one BMC and two fuzzing engines

• Use a tracer to coordinate the various engines

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation 
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340



Interval Analysis and Methods for 

Automated Test Case Generation

This combined method 

can reduce CPU time, 

memory usage, and 

energy consumption

We advocate that 

combining cooperative 

verification and 

constraint programming

is essential to leverage a 

modular cooperative 

cloud-native testing 

platform

Aldughaim, M., Alshmrany, K., Gadelha, M., de Freitas, R., Cordeiro, L.: FuSeBMC_IA: Interval Analysis and Methods 
for Test Case Generation - (Competition Contribution). FASE 2023: 324-329



Competition on Software Testing 2023: 
Results of the Overall Category 

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in 

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation 

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

https://test-comp.sosy-lab.org/2023/


EBF: Black-Box Cooperative 

Verification for Concurrent Programs

Aljaafari, F., Shmarov, F., Manino, E., 
Menezes, R., Cordeiro, L.: EBF 4.2: Black-Box 
Cooperative Verification for Concurrent 
Programs - (Competition Contribution). 
TACAS (2) 2023: 541-546



EBF 4.0 with different BMC tools

• BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min

• RAM limit is 15 GB per Benchexec run

• ConcurrencySafety main from SV-COMP 2022

- Witness validation switched off

• Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

• EBF4.0 increases the number of detected bugs for BMC tools

• EBF4.0 provides a better trade-off between bug finding and safety 

proving than each BMC engine



• wolfMQTT library is a client implementation of the MQTT protocol written 

in C for IoT devices

Int main(){

Pthread_t th1, th2;

static MQTTCtx mqttCtx;

pthread_create(&th1, subscribe_task, &mqttCtx))

pthread_create(&th2, waitMessage_task, &mqttCtx))}

static void *subscribe_task(void *client){

.....

MqttClient_WaitType(client,msg,MQTT_PACKET_TYPE_ANY, 

0,timeout_ms);

.....}

static void *waitMessage_task(void *client){

…

MqttClient_WaitType(client, msg, MQTT_PACKET_TYPE_ANY, 

0,timeout_ms);

.....}

static int MqttClient_WaitType(MqttClient *client, 

void *packet_obj,

byte wait_type, word16 wait_packet_id, int timeout_ms)

{

.....

rc = wm_SemLock(&client->lockClient);

if (rc == 0) {

if (MqttClient_RespList_Find(client, 

(MqttPacketType)wait_type,

wait_packet_id, &pendResp)) {

if (pendResp->packetDone) {

rc = pendResp->packet_ret;
.....}

subscribe_task

and waitMessage_task are 

called through different threads 
accessing packet_ret, 

causing a data race in 
MqttClient_WaitType

Here is where the 

data race might 

happen! Unprotected 

pointer

WolfMQTT Verification



WolfMQTT Verification

Buffer
ACK

ACK

1

2

3

4

Sharing buffer 

between clients

Unprotected 

pointer for the 

status code

Data race might 

happen if the broker 

sends the status code 

Buffer ACK

ACK

1

2

3

4
Buffer

To solve it  they copied 
the code status into 
different buffers

After fixing the 

concurrency 

vulnerability



Bug Report

https://github.com/wolfSSL/wolfMQTT

https://github.com/wolfSSL/wolfMQTT




Agenda

• Intoduce typical BMC Architectures for Verifying Software 

Systems

• Software Verification and Testing with the ESBMC 

Framework 

• Towards Self-Healing Software via Large Language Models 

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with 

ESBMC



Buggy 
Original code

Modified code
(Potentially 

fixed)DL Model

Fixed 
code

No 
effect

Introduces 
new errors

Deep Learning and 

Automated Program Repair

[1] Jin M, Shahriar S, Tufano M, Shi X, Lu S, Sundaresan N, Svyatkovskiy A. InferFix: End-to-End Program Repair with LLMs. arXiv e-prints. 2023 

Mar:arXiv-2303.

[2] Li Y, Wang S, Nguyen TN. Dlfix: Context-based code transformation learning for automated program repair. InProceedings of the ACM/IEEE 

42nd International Conference on Software Engineering 2020 Jun 27 (pp. 602-614).

[3] Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on 

artificial intelligence 2017 Feb 12 (Vol. 31, No. 1).



Large Language Models and 

Automated Program Repair

Buggy Original 
code

Modified code
(Potentially fixed)

Large 
Language Model

[4, 5]

Fixed 
code

No 
effect

Introduces 
new errors

Feedback

[4] Wang X, Wang Y, Wan Y, Mi F, Li Y, Zhou P, Liu J, Wu H, Jiang X, Liu Q. Compilable neural code generation with compiler feedback. 

arXiv preprint arXiv:2203.05132. 2022 Mar 10.

[5] Xia CS, Zhang L. Conversational automated program repair. arXiv preprint arXiv:2301.13246. 2023 Jan 30.[]



Large Language Models and 

Automated Program Repair

Buggy Original 
code

Modified code
(Potentially fixed)

Large 
Language Model

[4, 5]

Fixed 
code

No 
effect

Introduces 
new errors

Feedback

Compile-time error feedback misses run-time errors

Test suite may not be available



LLM + Formal Verification for 

Self-Healing Software

Original 
code

Modified code

Large 
Language Model

Bounded Model Checker
(BMC)

Verification 
Successful

Code + 
Property 
violation

[6] Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software 

Security: Towards Self-Healing Software via Large Language Models and Formal Verification. Under 

review at the ACM Transactions on Software Engineering and Methodology, 2023.



LLM + Formal Verification for 

Self-Healing Software

Original 
code

Modified code

Large 
Language Model

Verification 
Successful

Code + 
Property 
violation



LLM to Find Software Vulnerabilities

GPT-3.5 turbo

While we were in the process of preparing 

this presentation, if we asked GPT-3.5 “Is 

there any problem with this code?”, the 

response was an incorrect answer: 



LLM + Formal Verification for 

Self-Healing Software

GPT-3.5 turbo

Verification 
Successful

Violated property: 
file test.c line 4 
function main 

arithmetic
overflow on mul

!overflow(”*”, y, y)



Experimental Evaluation

Set-up

• Processor: AMD Ryzen 

Threadripper PRO 3995WX

• Cores: 16

• RAM: 256 GB

• Model: MacBook Pro (2017)

• RAM: 16 GB RAM of 

LPDDR3 RAM (2133 MHz)

• Processor: 2.5 GHz Intel 

Core i7-7660U

Code Generation

Code Repair

Benchmarks

Generate 1000 programs 

with GPT-3.5 turbo with 

the following prompt

Objectives

RQ1: (Code generation) Are the state-

of-the-art GPT models capable of 

producing compilable, semantically 

correct programs?

RQ2: (Code repair) Can external 

feedback improve the bug detection 

and patching ability of the GPT 

models?



Original 
code

Modified code

GPT-3.5 turbo

Verification 
Successful

Code + 
Property 
violation

10 to 50 lines of 
compilable C code

99.9% compilable programs

80% of the generated code buffer overflow and dereference failures 
could be fixed in a maximum of three iterations

RQ1

RQ2

Experimental Results



Generative AI through the Lens of 

Formal Verification
• The first AI-generated repository consisting of 112k independent and 

compilable C programs

Each program 

varies between 50 

and 600 lines

• Programming tasks from network management and table games to 

string manipulation

GPT-3.5-turbo

ESBMC-7.2

Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M., Cordeiro, L., Mavroeidis, 

V.: The FormAI Dataset: Generative AI in Software Security Through 

the Lens of Formal Verification. Accepted at ACM PROMISE, 2023



Ensure Diversity

• Proper prompt engineering is crucial 

for achieving a diverse dataset

• Each API call randomly chooses a 

type from 200 options in the Type 

category, including topics like Wi-Fi 

Signal Strength Analyzer, QR Code 

Reader, and others 

• Similarly, a coding style is selected 

from 100 options in the Style category 

during each query



Comparison of Various Datasets Based 

on their Labeling Classifications



C Keyword Frequency and 

Associated CWEs



The CWE Top 13

126

# ID Name

1 CWE-787 Out-of-bounds Write

2 CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site 

Scripting')

3 CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL 

Injection')

4 CWE-20 Improper Input Validation

5 CWE-125 Out-of-bounds Read

6 CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS 

Command Injection')

7 CWE-416 Use After Free

8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type

11 CWE-476 NULL Pointer Dereference

12 CWE-502 Deserialization of Untrusted Data

13 CWE-190 Integer Overflow or Wraparound

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html


Which Parameters Are Most Effective?

• We conducted experiments on 1,000 

randomly selected samples

• The classification results showcase the 

effects of different unwind (u) and time (t) 

coupled with/without k-induction

• The detection results for parameter 

selection of (u,t)=(1,10), (1,30), or 

(1,100) without k-induction show that 

increasing the time threshold yields 

diminishing returns for the same unwind 

parameter



Code Repair Performance

FormAI dataset Accuracy

1000 samples randomly 
selected from 112k C programs

35.5%



WARNING: BE CAREFUL WHEN RUNNING THE 

COMPILED PROGRAMS, SOME CAN CONNECT TO 

THE WEB, SCAN YOUR LOCAL NETWORK, OR 

DELETE A RANDOM FILE FROM YOUR FILE 

SYSTEM. ALWAYS CHECK THE SOURCE CODE 

AND THE COMMENTS IN THE FILE BEFORE 

RUNNING IT!!!

https://github.com/FormAI-Dataset 

FormAI Dataset - Availability

https://github.com/FormAI-Dataset


Agenda

• Intoduce typical BMC Architectures for Verifying Software 

Systems

• Software Verification and Testing with the ESBMC 

Framework 

• Towards Self-Healing Software via Large Language Models 

and Formal Verification

• Towards Verification of Programs for CHERI Platforms with 

ESBMC



Capability Hardware Enhanced 
RISC Instructions (CHERI)

CheriBSD2 - adaptation of FreeBSD to 
support CHERI ISAs

CHERI Clang/LLVM and LLD1 - compiler 
and linker for CHERI ISAs

pointer address (64 bits)

063

permissions (15 bits) reserved base and bounds (41 bits)

CHERI 128-bit capability

CHERI instruction-set extensions

1https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

2https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello3 - SoC development board 
with a CHERI-extended ARMv8-A 
processor
3https://www.arm.com/architecture/cpu/morello



#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024; /* models arbitrary user input */
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17; /* succeeds */
char *__capability c = cheri_setbounds(b-1, n); /* fails: not the same object */
/* ... */ /* more CHERI-C API checks */
memset_c(c, 42, n); /* setting memory through a capability */

}

CHERI-C program

CHERI-C API

New capability types



#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024; 
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17; 
char *__capability c = cheri_setbounds(b-1, n); 
/* ... */
memset_c(c, 42, n);

}

#include <string.h>
#include <stdio.h>

void main(void) {
int n = nondet_uint() % 1024;
char a[n+1], *b = a;
b[n] = 17;
char *c = b-1;
memset(c, 42, n);

}

All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM 
compiler 

Pure-capability CHERI-C model



ESBMC-CHERI

GOTO

Program

SMT 

formula

ASTScan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property is violated

C Program
Control-flow 

Graph 

Generator 

clang

CHERI-

Clang
Scan AST

Memory 

Model

CHERI 

Memory 

Model

External 

Libraries

CHERI-C 

API

Correctness 

Proof

Violation 

Witness

Implement computational 

model for CHERI-C API 

functions inside ESBMC 

(e.g., cheri_setbounds)

• New capability types

• Tagged memory

• Capability dereferencing

CHERI Clang/LLVM 
compiler 

Brauße et al.: ESBMC-CHERI: towards verification of C programs for CHERI 
platforms with ESBMC. ISSTA 2022: 773-776



Vision: Automated Reasoning System for 
Secure SW and AI 

Source 

code

Binary 

code

AI code

Automated 

Reasoning System 

(ARS): Searching, 

learning, memory 

and parallelization

Vulnerability 

classification

Properties

Severity

Likelihood

Remediation cost

Explainable

Behavior Correctness

Robustness

Detection Correction

Code inspection

Static Analysis

Dynamic Analysis Fault Localization

Fault Repair

Develop an automated reasoning system for safeguarding 

software and AI systems against security vulnerabilities 

in an increasingly digital and interconnected world





(Real) Impact: Students and Contributors

• 5 PhD theses

• 30+ MSc dissertations

• 30+ final-year projects

• GitHub:

▪ 35 contributors

▪ 22,160 commits

▪ 212 stars

▪ 84 forks

https://github.com/esbmc/esbmc 

https://github.com/esbmc/esbmc


Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• Best Tool Paper Award at SBSeg’23

• 29 awards from the international competitions on software verification (SV-

COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for 

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in C/C++ software

• Funded by government (EPSRC, British Council, Royal Society, CAPES, 

CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

🥇
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