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Introduction
Our research delves into the Weighted Model
Counting (WMC) problem, specifically explor-
ing its connection with Logical Boltzmann Ma-
chines (LBM). While WMC extends the Boolean
Satisfiability Problem (SAT) by quantifying and
weighing possible truth-value assignments, our
focus is on integrating LBM’s neurosymbolic ca-
pabilities to better understand these probabili-
ties. We introduce a novel concept of "reverse
intent" in WMC, investigating how individual
characteristics can influence the truth value of
clauses in a Boolean formula. This approach,
still in its early stages, aims to blend logic, ma-
chine learning, and probability theory to offer
new insights into the complexities of WMC.

Related Work
This article extends the foundational work in
theoretical computer science and logic, particu-
larly focusing on the Boolean Satisfiability Prob-
lem (SAT) and the Weighted Model Counting
(WMC) problem. It builds upon previous re-
search, notably referenced in [1], by applying
Bayesian methods to explore these challenges.
The paper emphasizes the integration of Logi-
cal Boltzmann Machines (LBM) with SAT and
WMC, linking abstract concepts with practical
applications. A key aspect of this research is
the shift from traditional clause-based analysis
to an individual-focused approach, examining
how unique characteristics of individuals influ-
ence the truth value of clauses in a Boolean for-
mula. This approach represents an innovative
expansion of the core concepts introduced in [1].

Conclusion
’
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Background and Theoretical Foundations
Boltzmann Machines are key stochastic neu-
ral networks in deep learning, linking statisti-
cal mechanics with information theory. They
model complex distributions through symmet-
rically connected neurons representing binary
states.

Figure 1: Basic structure of a RBM. Source: A De-
coding Scheme for Incomplete Motor Imagery EEG
With Deep Belief Network. Year: 2018.

• Standard Boltzmann Machines: The
original, fully connected stochastic binary
unit network, foundational to neural net-
work research.

• Restricted Boltzmann Machines
(RBMs): Two-layered (visible and hidden
layers), no intra-layer connections. Key in
deep learning for feature learning, dimen-
sionality reduction, and classification.

• Deep Boltzmann Machines (DBMs):
Multi-layered extension of RBMs for com-
plex data representation and deeper learn-
ing, crucial in advanced deep learning.

Proposed Method and Application
Introduction to the Problem:
The Nixon Diamond Problem illustrates chal-
lenges in logical and probabilistic reasoning due
to Nixon’s conflicting identities as a Republican
and a Quaker. Its resolution using Logical Boltz-
mann Machines highlights the effectiveness of
these machines in handling complex logical struc-
tures and probabilistic scenarios, particularly in
reconciling conflicting attributes in artificial in-
telligence systems. As demonstrated in [1], we
can assign weights to each clause as shown. The
following table presents the statements accompa-
nied by each statement clause and an associated
weight.

Statement Clause Weight
Nixon is a Republican n → r 1000

Nixon is a Quaker n → q 1000
Republicans not Pacifists r → ¬p 10

Quakers are Pacifists q → p 10

Conversion to SDNFs: Applying LBMs to
the Nixon Diamond Problem involves converting
weighted statements into Strict Disjunctive Nor-
mal Forms (SDNFs), where statements are ex-
pressed as ORs of AND clauses. This simplifies
logical relationships for computational process-
ing. As exemplified in [1], the SDFN are repre-
sented as, for example, n → r 1000 : (n∧r)∨(¬n).
Building the RBM: This process involves using
the unique conjunctive clauses and their corre-
sponding weights derived from the SDNF conver-
sion. Each clause, along with its weight, forms
a part of the RBM’s structure, serving as in-
puts to the machine. The RBM utilizes these
inputs to analyze and infer the complex interrela-
tionships between the different beliefs and state-
ments. The RBM for this problem includes the
following clauses with their weights:

Clause Weight
n ∧ r 1000
¬n 2000
n ∧ q 1000
r ∧ ¬p 10
¬r 10
q ∧ p 10
¬q 10

Weighting and Normalization: After con-
verting the clauses, we can move towards in-
troducing weights to the variables of the prob-
lem, progressively aligning it more closely with
the Weighted Model Counting (WMC) problem.
While the RBM assigns weights to clauses, we
aim to correlate the weight of each clause with

the individual weights of its elements through
an empirical analysis. This approach seeks to
deduce which elements are most influential and
carry more weight in a decision-making process
of an LBM, for instance. Considering that all
other variables in the model are treated as logical
conjunctions, which can be represented by multi-
plications based on the truth table principles of
logical conjunctions, it’s feasible to approach this
as a problem of solving a linear system. In this
context, the goal is to find values for the variables
that satisfy the given sentences or clauses. Each
clause, along with its associated weight, can be
viewed as an equation in this linear system. The
weights 2000 for ¬n, 10 for ¬r, and 10 for ¬q
represent specific values that the equations must
satisfy. The equations of this linear system is n
×r = 1000;n× q = 1000; r×¬p = 10; q× p = 10.
Therefore, a possible solution is:

Variable Value
n 100
r 10
q 1
p 10
¬p 1

Probabilistic Analysis and Model Formu-
lation: After obtaining the values of clauses and
variables, we can further evolve our analysis and
identify the probability relationships between the
presented clauses. There are several ways to ac-
complish this, but given the values we have con-
structed in this example, we applied the tech-
nique of Normalization to probability distribu-
tion. Essentially, this ensures that all elements
are positive and their sum equals 1, adhering to
the properties of a probability distribution.

Clause Weight
n ∧ r 0.24752475
¬n 0.4950495
n ∧ q 0.24752475
r ∧ ¬p 0.00247525
¬r 0.00247525
q ∧ p 0.00247525
¬q 0.00247525

We can also apply this normalization technique
to individual variables to achieve a probabil-
ity distribution. 0.24752475: n; 0.4950495: r;
0.24752475: q; 0.00247525: p; 0.00247525: ¬p.
Based on the approach we’ve discussed, We see
great promise in correlating a statistical method
with a Logical Boltzmann Machine (LBM). This
initiative involves assigning probabilistic values
to logical statements, which significantly enriches
the analysis of their impact within the LBM
framework.


