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Introduction
In this poster we utilize the Logical Boltzmann
Machine (LBM) introduced by Son [5] to tackle
the MAX-SAT problem. A LBM is a neu-
rosymbolic system that can represent any logi-
cal proposition in strict disjunctive normal form
(SDNF) as a Restricted Boltzmann Machine
(RBM). As an energy-based model, we can min-
imize it’s free energy function to arrive at the
truth value assignment that maximises the num-
ber of satisfied clauses. We benchmark our
model with the incomplete solver Loandra, one
of the highest-rated solutions in the 2023 Max-
SAT Evaluation. Altough results show average
cost of the LBM is lower than Loandra, the lat-
ter still performs better at current MAX-SAT
benchmarks with more than 20.000 clauses.

Related Works
Son introduced a neurosymbolic system (Logical
Boltzmann Machine) for reasoning about sym-
bolic knowledge at scale, showing equivalence
between energy minimization and logical satis-
fiability [5]. Furthermore, Son showed equiva-
lence between propositional logic and restricted
Boltzmann machines and future work focuses on
scaling up applications to SAT and end-to-end
learning and reasoning [6]. Hernandez et al.
[2] introduces High Order Boltzmann Machine
(HOBM) applications and maps the MAX-SAT
problem into an HOBM combinatorial optimiza-
tion framework, offering an approximate solu-
tion to SAT.

Conclusion
Altough the average cost of the LBM is lower
than Loandra, we cannot conclude that it is bet-
ter at solving MAX-SAT due to the high stan-
dard deviation on both values. It is necessary
to develop our current implementation further
to be more competivive with current symbolic
solutions. A possible alternative would
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MAX-SAT problem definition
MAX-SAT is a generalization of the SAT problem (Boolean satisfiability problem), where the
problem is to determine the truth value assigment, also called model, that maximises the number of
satisfied clauses of a given boolean formula, tipically in conjunctive normal form (CNF).

Example: (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)
This formula is unsatisfiable, but the model x1 = F, x2 = F results in three clauses being satisfied,
which is the maximum number of satisfiable clauses.

Algorithm Explanation
A Restricted Boltzmann Machine (RBM), shown in Figure 1 , is a bidirectional graph model that
captures the probability distribution of a given dataset.

Figure 1: A graphical representation of an RBM. Source: Nguyên Văn L̃ınh

As a enerby-based model, it’s purpose is to encode dependencies between variables using the following
energy function [5]:

E(x,h) = −
∑
i,j

wijxihj −
∑
i

aixi −
∑
j

bjhj (1)

Where ai and hj are the biases of the input node xi and hidden unit hj respectively, and wij is the
connection weight between xi and hj . Son [5] proved that any logical proposition can be represented
by an RBM’s energy function by first converting the proposition into the Strict Disjunctive Normal
Form, which is a DNF with at most one conjunctive clause that maps to True.
One way of finding the MAX-SAT model is utilizing the free energy function of the RBM:

FB = −
∑
j

(−log(1 + exp(c
∑

i∈A∪B
wijxi + bj))) (2)

Where the term −log(1 + exp(c
∑

i∈A∪B wijxi + bj)) is a negative softplus function scaled by a
non-negative value c called confidence value. The more likely a truth assignment is to satisfy the
proposition, the lower the output. Using a local search method named dual annealing, the algo-
rithm can find value assignments that minimize the free energy of the RBM. The general solution is
summarized below:

LBM(cnf,c,t):
cnf : A logical proposition in conjuctive normal form
c: Confidence value
t: timeout for the optimizing algorithm, given in seconds
sdnf ← toSDNF(cnf) ▷ Converts CNF to SDNF
rbm ← RBM(sdnf, c) ▷ Builds the RBM model
cost, model ← FEMin(rbm, t) ▷ Minimizes the RBM’s free energy function
return cost, model

Results
Cost (avg.)

Loandra 171.4±8.45
LBM 169.4±4.22

Table 1: Performance of LBM against Loandra.

To benchmark the effectiveness of LBM against modern MAX-SAT solutions we compared our al-
gorithm to Loandra, one of the top solvers in MAX-SAT Evaluations 2023 [4]. The chosen dataset
comes from the MAX-SAT Evaluation 2016 incomplete category, named maxcut. We chose an older
set of data due to the processing limitations in our algorithm, that couldn’t handle propositions
with more than 20.000 clauses. Each algorithm passed through the same 5 different instances of the
problem, with the final cost averaged out. The cost is the number of clauses that were not satisfied
by the truth value assignment given by the solvers.


